Electronic Supplemental Information

Straight and Twisted Open Nodal-line Phonon States in CaI_{2} Family of Materials
Meng-XinWu ${ }^{\text {a }}$, Da-Shuai Ma ${ }^{\text {b,c }}{ }^{*}$, Tie Yang ${ }^{\text {a }}$, Yu-Hao Wei ${ }^{\text {a }}$, Ke Chai ${ }^{\text {d }}$, Peng Wang ${ }^{\text {a }}$, Biao Wang ${ }^{\text {a }}$, Min-Quan Kuang ${ }^{\text {a, }}$ *
${ }^{\text {a }}$ Chongqing Key Laboratory of Micro \& Nano Structure Optoelectronics, and School of Physical Science and Technology, Southwest University, Chongqing 400715, P.R. China
${ }^{\mathrm{b}}$ Institute for Structure and Function \& Department of Physics \& Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, P. R. China
${ }^{\text {c }}$ Center of Quantum materials and devices, Chongqing University, Chongqing 400044, P. R. China ${ }^{d}$ Kunming Institute of Physics, Kunming, 650223, P.R. China

(c)

Figure S . Band structures of CaI_{2} (a), MgBr_{2} (b) and MgI_{2} (c). One can find $\mathrm{CaI}_{2}, \mathrm{MgBr}_{2}$ and MgI_{2} are semiconductors with an indirect gap 3.50 eV , a direct gap 4.23 eV and an indirect gap 3.53 eV , respectively.

[^0](a)

(b)

Figure S2. Phonon spectra of CaI_{2} for the $3 \times 3 \times 2$ supercell (a) and the $3 \times 3 \times 3$ supercell (b).
(a)

(b)

(d)

(c)

Figure S3. The computed phonon spectra of CaI_{2} under -3% uniaxial strain on the c axis (a), $+3 \%$ uniaxial strain on the c axis (b), -2% uniform strain (c) and $+2 \%$ uniform strain (d). The inset in (b) is an enlarge view for the rectangle.

Figure S 4 . The calculated phonon spectra, phonon DOS and surface states for $\mathrm{MgBr}_{2}(\mathrm{a}-\mathrm{c})$ and $\mathrm{MgI}_{2}(\mathrm{~d}-\mathrm{f})$. The numbers 1, 2, 3 and 4 indicate four sets of open PWNLs. The blue lines in (b-c) and (e-f) indicate the phonon spectra along selected high symmetry lines. The black arrows in (c) and (f) indicate the surface states connecting to the projected PWNL3.

Figure S5. Bulk BZ with specific symmetry points and their projections on the (010) plane as well as the corresponding surface states along given paths for CaI_{2}. Figure (a-b), (c-d), (e-f) and (g-h) correspond to the open PWNL1, 2, 3 and 4 (see Figure 2(a)), respectively. The red lines in the (010)-projected plane stand for the projections of the open PWNL1, 2, 3 and 4, respectively. The solid blue lines in the surface states indicate the phonon spectra along selected routes. The insets in (b) are enlarge views of the BCPs with linear dispersions.

Figure S6. The calculated surface states for MgBr_{2} along similar routes in Figure S 5 for PWNL1 (a), PWNL2 (b), PWNL3 (c), and PWNL4 (d), respectively. The solid blue lines illustrate the phonon spectra along selected routes.

Figure S7. The calculated surface states for MgI_{2} along analogous routes in Figure S 5 for the open PWNL1 (a), PWNL2 (b), PWNL3 (c), and PWNL4 (d), respectively. The solid blue lines stand for the phonon spectra along selected routes.

Figure S8. The calculated phonon spectra based on the phononic tight-binding model, which is consistent with the first-principles calculations results (the highlighted red lines in Figure 2 (a))
(a)

(b)

Figure S 9 . (a) The phonon spectra for CaI_{2} in the range of $0-2.4 \mathrm{THz}$. The black rectangle and arrows indicate the PWNL along Γ - A . The inset is an enlarge view of the red rectangle where the red arrows stand for the BCPs along $\Gamma-\mathrm{K}$ and $\mathrm{H}-\mathrm{A}$. (b) The calculated surface states near 2 THz . The black arrows indicate the surface states stemming from PWNL along Γ-A. The red arrows indicate the surface states coming from the PWNL crosses $\Gamma-\mathrm{K}$ and $\mathrm{H}-\mathrm{A}$. The surface states from the PWNL along K-H are buried in the bulk states.

Table 1. The experimental and calculate lattice parameters (in units of \AA) by PBE and vdW corrections.

	Experimental 1		PBE^{2}		vdW^{2}	
Compound	a	c	a	c	a	c
CaI_{2}	4.490	6.975	4.543	7.881	4.478	7.022
MgBr_{2}	4.154	6.865	4.204	7.836	4.159	6.944
MgI_{2}	3.810	6.260	3.878	7.138	3.838	6.219

${ }^{1}$ References 1-3.
${ }^{2}$ Present work

Table 2. The calculated elastic constants $C_{i j}(\mathrm{GPa})$, the bulk modulus $B(\mathrm{GPa})$, the shear modulus $G(\mathrm{GPa})$, Young's modulus $E(\mathrm{GPa})$, Poisson's ratio v and Pugh's ratio B / G for $\mathrm{CaI}_{2}, \mathrm{MgBr}_{2}$ and MgI_{2}, respectively.

Compound	C_{11}	C_{12}	C_{13}	C_{14}	C_{33}	C_{44}	B	G	E	v	B / G
CaI_{2}	29.6	8.40	6.42	-1.66	15.68	3.91	12.40	6.40	16.38	0.280	1.937
MgBr_{2}	60.80	18.28	8.91	-1.56	27.30	5.90	15.78	8.70	22.04	0.267	1.814
MgI_{2}	45.99	13.64	5.58	-0.86	18.07	4.05	22.48	11.9 2	30.38	0.274	1.887

References
[1] H. Blum, Z Phys. Chem. 22, 298-304 (1933).
[2] C. M. Widdifield, and D. L. Bryce, Phys. Chem. Chem. Phys. 11, 7120-7122 (2009).
[3] I. W. Bassi, F. Polato, M. Calcaterra, and J. C. J. Bart, Z. Krist-Cryst. Mater. 159, 297-302 (1982).

[^0]: *Corresponding authors: D.S. Ma (madason.xin@gmail.com), M.Q. Kuang (mqkuang@swu.edu.cn)

