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Figure 1: Calculated potential energy profiles® of the set of molecules analyzed in this
work. Blue graphs: mono-esters, green: di-esters, red: tri-esters. All energy decreases (~|50
kcal /mol|) are related to the exit of the leaving group in the hydrolysis process. That is, all
reactions occur with a stabilization of the total potential energy in the system.
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Figure 2: Changes in the angle /NucO-P-O through the metadynamics. In the mono-ester
reactive state (RS), the angle is around 60°. The nucleophile can not form the phosphorane
state, in contrast to the di- and tri-ester systems.? In di- and tri-ester, the RS is characterized
by a /NucO-P-O of 90°, indicating the formation of the phosphorus pentavalent state. For
all the systems, the product state exhibits an angle of ~ 110°, which indicates a similar
tetrahedral conformation for the phosphates.
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Figure 3: Changes in the angle NucO-P-0;-O through the metadynamics. The reaction can
also be characterized through changes in the dihedral angle NucO-P-0;-O,, highlighted in
the structures. The three kind of phosphates reach the RS stabilization when NucO-P-01-0O,
angle is around 0°. For product states (PS), the dihedral angle shows an increase from mono-
to di- and tri-ester, taking into account the steric hindrance and the substitution degree.3*
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Figure 4: Free Energy Surfaces (FES) for all the mono-ester analyzed in this work. The
approximate positions of RS, PS and Transition States (TS) are shown. The depicted struc-
tures® for RS and PS exhibit the most representative conformation in the trajectory. Also,
the calculated minimum energy pathway®7 for each surface is presented. Energy units for
free energy are [kcal/mol|.



Supplementary Figure 5

Di-ester

Diphenylphosphate

r

Reactives

Dietylphosphate

Reactives

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

d(Nu-P) [A]

N-sub Dideoxyribose
phosphate k

d(P-LG) [A]

Reactives

25 30 35 40
d(Nu-P) [A]

0.5 10 15 2.0

-18 Transition
State

=20

=22

-2

S |

% Products
-8
-10

-12 §

—-16
_1g Transition

_,o State

-18 Transition
State

Figure 5: Free Energy Surfaces (FES) for all the di-ester analyzed in this work. The ap-
proximate positions of RS, PS and Transition States (TS) are depicted. The structures for
RS and PS exhibit the most representative conformation in the trajectory. Energy units
[kcal /mol]
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Figure 6: Free Energy Surfaces (FES) for all the tri-ester analyzed in this work. The ap-
proximate positions of RS, PS and Transition States (TS) are depicted. The structures for
RS and PS exhibit the most representative conformation in the trajectory. Energy units

[kcal /mol]
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For each system, a .mp4 movie is presented inside the mouvies-reaction.zip file. The ani-
mation shows the precise moment where the nucleophile attacks the P center and then the
leaving group abandons the substrate. The simulations are visualized in VMD?® and exported

employing Kazam.®
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Figure 7: APotential energy graph as a function of time for the equilibration process of
[Cu™(1,10-phenanthroline) (H,0)5,(PO,)|~ system.
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Figure 8: Temperature graph as a function of time for the equilibration process of [Cu(H)(l,lo—
phenanthroline)(H,0);4(PO4)|~ system.
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Figure 9: Pressure graph as a function of time for the equilibration process of [Cu(H)(l,IO—
phenanthroline)(H50)54(PO4)|~ system.
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Table 1: Average trajectory time for Well-Tempered Metadynamics (WTMTD)
simulations.

Monoester WTMTD trajectory time (ps)
Phenylphosphate 3.4
Phosphoserine 6.7
Adenine nucleotide 5.6
Diester

Diphenylphosphate 13.0
Diphenylphosphate 17.8
N-substituted dideoxyribosephosphate 6.0
Triester

Triphenylphosphate 9.7
Ethyl diphenilphosphate 10.1
Mevinphos 10.0
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