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Supplementary Figure 1

  

                                                                                                  a) Phenylphosphate b) Diphenylphosphate c) Triphenylphosphate

                                                                            g) Adenine nucleotide h) N-sub Dideoxyribosephosphate i) Mevinphos

                                                                                                              d) Phosphoserine e) Dietylphosphate f) Ethyl Diphenilphosphate

Figure 1: Calculated potential energy pro�les1 of the set of molecules analyzed in this
work. Blue graphs: mono-esters, green: di-esters, red: tri-esters. All energy decreases (∼|50
kcal/mol|) are related to the exit of the leaving group in the hydrolysis process. That is, all
reactions occur with a stabilization of the total potential energy in the system.

2



Supplementary Figure 2

  

 Angle

Figure 2: Changes in the angle 6 NucO-P-O through the metadynamics. In the mono-ester
reactive state (RS), the angle is around 60◦. The nucleophile can not form the phosphorane
state, in contrast to the di- and tri-ester systems.2 In di- and tri-ester, the RS is characterized
by a 6 NucO-P-O of 90◦, indicating the formation of the phosphorus pentavalent state. For
all the systems, the product state exhibits an angle of ∼ 110◦, which indicates a similar
tetrahedral conformation for the phosphates.
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Dihedral Angle

Figure 3: Changes in the angle NucO-P-O1-O2 through the metadynamics. The reaction can
also be characterized through changes in the dihedral angle NucO-P-O1-O2, highlighted in
the structures. The three kind of phosphates reach the RS stabilization when NucO-P-O1-O2

angle is around 0◦. For product states (PS), the dihedral angle shows an increase from mono-
to di- and tri-ester, taking into account the steric hindrance and the substitution degree.3,4
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Figure 4: Free Energy Surfaces (FES) for all the mono-ester analyzed in this work. The
approximate positions of RS, PS and Transition States (TS) are shown. The depicted struc-
tures5 for RS and PS exhibit the most representative conformation in the trajectory. Also,
the calculated minimum energy pathway6,7 for each surface is presented. Energy units for
free energy are [kcal/mol].
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Figure 5: Free Energy Surfaces (FES) for all the di-ester analyzed in this work. The ap-
proximate positions of RS, PS and Transition States (TS) are depicted. The structures for
RS and PS exhibit the most representative conformation in the trajectory. Energy units
[kcal/mol]
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Figure 6: Free Energy Surfaces (FES) for all the tri-ester analyzed in this work. The ap-
proximate positions of RS, PS and Transition States (TS) are depicted. The structures for
RS and PS exhibit the most representative conformation in the trajectory. Energy units
[kcal/mol]
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For each system, a .mp4 movie is presented inside the movies-reaction.zip �le. The ani-

mation shows the precise moment where the nucleophile attacks the P center and then the

leaving group abandons the substrate. The simulations are visualized in VMD8 and exported

employing Kazam.9
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Figure 7: ∆Potential energy graph as a function of time for the equilibration process of
[Cu(II)(1,10-phenanthroline)(H2O)54(PO4)]− system.
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Figure 8: Temperature graph as a function of time for the equilibration process of [Cu(II)(1,10-
phenanthroline)(H2O)54(PO4)]− system.

Figure 9: Pressure graph as a function of time for the equilibration process of [Cu(II)(1,10-
phenanthroline)(H2O)54(PO4)]− system.
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Table 1: Average trajectory time for Well-Tempered Metadynamics (WTMTD)
simulations.

Monoester WTMTD trajectory time (ps)
Phenylphosphate 3.4
Phosphoserine 6.7
Adenine nucleotide 5.6
Diester
Diphenylphosphate 13.0
Diphenylphosphate 17.8
N-substituted dideoxyribosephosphate 6.0
Triester
Triphenylphosphate 9.7
Ethyl diphenilphosphate 10.1
Mevinphos 10.0
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