Supporting Information

What about Electrochemical Behaviors for Aurivillius-Phase

Bismuth Tungstate? Capacitive or Pseudocapacitive

Jian-Fei Gao ^{1, 2, †}, Jing-Feng Hou ^{1, 2, †}, Ling-Bin Kong ^{1, 2, *}

¹ State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China

² School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China

* Corresponding author: L.-B. Kong. E-mail: konglb@lut.edu.cn

[†] These authors contributed equally: Jian-Fei Gao, Jing-Feng Hou.

1. Experimental

1.1 Chemicals and reagents

All the reagents used in the experiment were of analytical grade and used without further purification. Bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O) and Sodium Tungstate Dihydrate (Na₂WO₄·2H₂O) were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Anhydrous ethanol (C₂H₅OH) and concentrated sulfuric acid (H₂SO₄) were purchased from Damao Chemical Reagent Factory (Tianjin, China). Steel mesh (99.99%, 1.7 mm) was purchased from Lizhiyuan Co, Ltd (Shanxi, China). Deionized water with a resistivity of $> 10.0 \text{ M}\Omega$ was used in experiments.

1.2 Electrochemical evaluation

The capacitive effects are characterized by analyzing the cyclic voltammetry data at various sweep rates according to:

$$\mathbf{i} = a v^{D} \tag{1}$$

where the measured current *i* obeys a power law relationship with the sweep rate v. Both *a* and *b* are adjustable parameters, with *b*-values determined from the slope of the plot of log *i* vs log v. In the eqn, the *b*-value is 0.5, the electrode material behaves as a battery property, while the *b*-value is 1, the electrode material exhibits pseudo-capacitance properties. And materials with the *b*-value in the range of 0.5-1 generally exhibit battery properties and pseudocapacitance properties.

Dunn et al. developed an approach to analyze the storage mechanism from the CV curve, where the current response at a fixed potential as being the combination of two separate mechanisms, surface capacitive effects and diffusion-controlled insertion processes:

$$i_{(V)} = k_1 \nu + k_2 \nu^{1/2}$$
(2)

Where $i_{(V)}$ is the current response at a fixed potential, v is the sweep rate, k_1 and k_2 are constant at the fixed potential. For analytical purposes, we rearrange this slightly to

$$i(V)'\nu^{1/2} = k_1 \nu^{1/2} + k_2 \tag{3}$$

In eq (3), $k_1 v$ and $k_2 v^{1/2}$ correspond to the current contributions from the surface

capacitive effects and the diffusion-controlled intercalation process, respectively. Thus, by determining k_1 and k_2 , we are able to quantify, at specific potentials, the fraction of the current due to each of these contributions.