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We provide supplementary information concerning (1) the derivation of the one-dimensional hy-
drogen transfer Hamiltonian and deviations from a reaction path Hamiltonian, (2) numerical details
on quantum dynamics calculations via the (ML)MCTDH methods, (3) details on the initial state in
terms of the vibro-polaritonic density of states and (4) a derivation of the photon number operator
in length-gauge representation.

I. ONE-DIMENSIONAL HYDROGEN
TRANSFER REACTION HAMILTONIAN

A. Reaction Potential and Minimum Energy Path

We derive the one-dimensional H-transfer Hamilto-
nian, ĤS (Eq.(2) with N = 1 in the main text ), from a
two-dimensional asymmetric H-transfer reaction Hamil-
tonian for thioacetylacetone (TAA) developed by Doslić
et al.[1]. This Hamiltonian was constructed from ab ini-
tio electronic structure calculations and reads

ĤR = − ~2

2µS

∂2

∂q2
− ~2

2µB

∂2

∂Q2
+ V (q,Q) , (I1)

with a (H-transfer) reaction coordinate, q, a (collec-
tive) “heavy” mode coordinate, Q, and corresponding re-
duced masses, µS = 1914.028me and µB = 8622.241me,
respectively.[1] The two-dimensional molecular potential
energy surface (PES), V (q,Q), is given by

V (q,Q) = V (q) +
µB ω

2
B

2
(Q− λS(q))

2
, (I2)

with “heavy” mode frequency, ωB = 0.0009728Eh, and
nonlinear coupling function, λS(q) = aS q

2 + bS q
3, de-

termined by parameters, aS = 0.794 a−10 and bS =
−0.2688 a−20 . The reaction path potential is described
in terms of an adiabatic potential

V (q) =
1

2

(
V+(q)−

√
V 2
−(q) + 4K2(q)

)
, (I3)

where, V±(q) = V1(q) ± V2(q), with diabatic harmonic
PES, Vi(q), and non-adiabatic coupling function, K(q),
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defined as

Vi(q) =
µi ω

2
i

2
(q − qi,0)2 + ∆i , (I4)

K(q) = kc exp

(
−(q − qc)2

)
. (I5)

The harmonic potentials resemble the R–OH (V1(q))
and R–SH (V2(q)) configurations in TAA with corre-
sponding harmonic frequencies, ωOH = 0.01487Eh/~ and
ωSH = 0.01247Eh/~, reduced masses, µOH = 1728.46me

and µSH = 1781.32me, relative energy shifts, ∆OH =
0.0Eh and ∆SH = 0.003583Eh, as well as displacements,
qOH,0 = −0.7181 a0 and qSH,0 = 1.2094 a0. The cou-
pling function, K(q), is determined by an amplitude,
kc = 0.15582Eh, and a displacement, qc = 0.2872 a0.[1]
Further, a molecular dipole function (neglecting the vec-
tor character of the dipole moment) is given in Ref.[1]
as

d(q,Q) = d0 + dS(q − q0) + dB(Q− λS(q))

+ dSB(q − q0)(Q− λ(q)) , (I6)

with parameters, d0 = 1.68 ea0, dS = −0.129 ea0/a0,
dB = 0.023 ea0/a0, dSB = 0.451 ea0/a

2
0 and q0 =

−0.59 a0.
In the present work, where we focus on the ensemble

character of isomerizing molecules, an effective approxi-
mate one-dimensional Hamiltonian, ĤS , and correspond-
ing dipole function, d(q), are constructed, which still re-
semble the main features of their two-dimensional coun-
terparts. We derive the one-dimensional transfer Hamil-
tonian by minimizing, V (q,Q), with respect to Q as

∂

∂Q
V (q,Q) = 0 ⇔ Q0 = λ(q) , (I7)

such that the transfer potential and the dipole function
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FIG. S1. (a) One-dimensional hydrogen-transfer reaction potential, V (q) (in black), with dipole function, d(q), and two lowest
eigenstates, ψ0(q) = ψOH(q) and ψ1(q) = ψSH(q). (b) Ground state, |ψ0(q,Q)|2 = |ψOH(q,Q)|2, and (c) first excited state
densities, |ψ1(q,Q)|2 = |ψSH(q,Q)|2, of two-dimensional reaction Hamiltonian, ĤR, in Eq.(I1) embedded in two-dimensional
molecular PES, V (q,Q), given in Eq.(I2) with contours in cm−1.

subsequently simplify to one-dimensional functions

V (q,Q0) = V (q) , (I8)
d(q,Q0) = d(q) = d0 + dS(q − q0) . (I9)

The latter holds equivalently for an ensemble of N trans-
fer ensembles. In our study, we neglect the “heavy mode”,
Q, which does not couple via a potential-like term to
the transfer coordinate, q. In Fig.S1, we show V (q) and
d(q), with the lowest two eigenfunctions, ψ0(q) = ψOH(q)
(enol) and ψ1(q) = ψSH(q) (enethiol), indicated. The
latter were obtained by diagonalizing ĤS in terms of a
Colbert-Miller discrete variable representation (DVR)[5]
for the transfer coordinate with Nq = 121 grid points
and q ∈ [−1.5, 2.1] a0. The corresponding eigenener-
gies are ε0 = 988.3 cm−1 and ε1 = 1092.8 cm−1 as
stated in the main text with an energy difference of
∆ε10 = ε1 − ε0 = 126.5cm−1.

For the two-dimensional Hamiltonian, ĤR, in Eq.(I1),
we numerically obtain energies, ε0 = 1037.5 cm−1 and
ε1 = 1158.3 cm−1, for the ground and first excited
states, respectively, with energy difference of ∆ε10 =
120.8 cm−1. Here, were we again employed a Colbert-
Miller DVR with transfer grid parameters equivalent to
the one-dimensional case discussed above and “heavy”
mode coordinate Q ∈ [−2.0, 2.0] a0 with NQ = 61 grid
points. Eventually, classical activation energies are by
construction equivalent for the one- and two-dimensional
PES with ∆EclOH = 1598 cm−1 and ∆EclSH = 1081 cm−1

as stated in the main text, since V (q) is equivalent to
the reaction potential along the minimum energy path
on V (q,Q).

B. Deviations from a Reaction Path Hamiltonian

We discuss deviations of our approach from a reac-
tion path Hamiltonian, which additionally involves ki-

netic energy couplings due to non-zero reaction path cur-
vature. Miller, Handy and Adams[2] showed that a reac-
tion path Hamiltonian of a two-dimensional system with
mass-weighted, cartesian-like coordinates is given by

Ĥ(p̂s, s, P̂s, Qs) =
p̂2s

2 (1 +Qs κ(s))
2 +V0(s)+Ĥvalley(s) ,

(I10)
where the first two terms correspond to kinetic and po-
tential energy contributions along the reaction coordi-
nate, s, with conjugate momentum, p̂s, whereas the third
term provides the “valley” Hamiltonian

Ĥvalley(s) =
P̂ 2
s

2
+
ω(s)2

2
Q2
s . (I11)

The latter accounts for a s-dependent “valley” mode with
frequency, ω(s), perpendicular to the reaction path that
couples to the reaction coordinate via the reaction path
curvature, κ(s). For the hydrogen transfer system stud-
ied here, we have by construction, V0(s) = V (q,Q0) =
V (q).

In the following, we discuss deviations from
Ĥ(p̂s, s, P̂s, Qs), which emerge when approximating the
reaction path contribution by the bare transfer Hamilto-
nian

ĤS =
p̂2q
2

+ V (q) = − ~2

2µS

∂2

∂q2
+ V (q) . (I12)

This assumption is equivalent to approximately decou-
pling the “valley” Hamiltonian, Ĥvalley(s), from the re-
action path contribution by assuming the reaction path
curvature, κ(s), to be small. In order to access this con-
dition, we discuss the curvature, κ(s), of the minimum
energy or reaction path, s(q), which we introduce as para-
metric curve in the mass-weighted q-Q-plane[3]

s(q) = (s1(q), s2(q))
T

= (
√
µS q,

√
µB Q0(q))

T
, (I13)
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FIG. S2. a) Contour plot of molecular PES, V (q,Q), in mass-
weighted coordinates with reaction path, s(q), in red and col-
orbar in wave numbers (cm−1) and b) minimum energy path
curvature, κs(q), parameterized by mass-weighted transfer co-
ordinate, √µS q with maximum at the transition state.

with components, s1(q) and s2(q). Here, Q0(q) = λS(q),
as derived in Eq.(I7), which minimizes, V (q,Q), with re-
spect to variations in the “heavy” mode coordinate. From
s(q), which is parameterized in terms of the hydrogen-
transfer coordinate, q, we obtain the corresponding cur-
vature, κs(q), as[4]

κs(q) =
det (s′, s′′)

||s′||3
=
|s′1s′′2 − s′′1s′2|

[(s′1)2 + (s′2)2]
3
2

, (I14)

with derivatives, s′i = ∂
∂q si(q) and s′′i = ∂2

∂q2 si(q), respec-
tively. We like to emphasize, that κs(q) depends now on
the hydrogen transfer coordinate, q, which parametrizes
the reaction path. Further, for reaction path elements,
s1(q) =

√
µS q and s2(q) =

√
µB λS(q), we find deriva-

tives

s′1 =
√
µS , (I15)

s′2(q) =
√
µB
(
2 aS q + 3 bS q

2
)

, (I16)

and

s′′1 = 0 , (I17)
s′′2(q) =

√
µB (2 aS + 6 bS q) , (I18)

which allow us to write the curvature explicitly as

κs(q) =
2
√
µS µB |aS + 3 bS q|[

µB q2 (2 aS + 3 bS q)
2

+ µS

] 3
2

. (I19)

In Fig.S2a, we show the two-dimensional molecular PES,
V (q,Q), with reaction path, s(q), in red and the corre-
sponding curvature, κs(q), in Fig.S2b. A kinetic separa-
tion of the reaction path from the “valley” coordinate is
a good approximation, if

T̂s =
p̂2s

2 (1 +Qs κs(q))
2 ≈

p̂2q
2

= T̂q , (I20)

which holds for |Qs κs(q)| � 1. By taking into account
the maximal curvature, κs(q = 0.0) ≈ 0.078 (

√
me a0)−1,

at the transition state (q = 0.0), the coupling is
solely determined by the “valley” coordinate’s magnitude,
which can be traced back to the excitation of the two-
dimensional transfer system along the “heavy” mode. We
shall estimate the latter by means of of the harmonic “val-
ley” potential’s classical turning points

Q±s = ±
√

~
ωB

(2v + 1) , (I21)

with vibrational quantum number, v, and, ω(q) = ωB ,
at the transition state. For, v = 1, we find, |Q±s κs(q =
0.0)| ≈ 4.3, i.e., in principal already for the “heavy” mode
being excited to the first excited state, which has to be ex-
pected during the transfer process, we observe a coupling
to the reaction coordinate that is assumed to alter the
transfer dynamics of the molecular isomerization model
system. However, as the role of the “heavy” mode is not
central for the cavity-induced isomerization dynamics,
we consider our approximation to be qualitatively valid
and sufficient to discuss entanglement-induced collective
effects in the herein studied reactive vibro-polaritonic
model.

II. NUMERICAL DETAILS FOR QUANTUM
DYNAMICS

We solve the TDSE (Eq.(8) in the main text) nu-
merically by means of the multiconfigurational time-
dependent Hartree (MCTDH) method and its multi-
layer extension (ML-MCTDH). We propagate up to fi-
nal time, tf = 1000 fs, unless stated otherwise, and
employ a Colbert-Miller DVR[5] for transfer reaction
coordinates, qi ∈ [−1.5, 2.1]a0, with Nq = 101 grid
points as well as a harmonic oscillator (HO) DVR for
the cavity mode with Nc = 101 grid points and xc ∈
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FIG. S3. Multilayer trees for different ensemble sizes N with S1 to SN transfer systems and cavity mode C. Number of SPFs
are shown next to bonds connecting circular nodes and number of primitive basis functions are shown next to bonds connecting
circular and square nodes. All trees are employed for light-matter interaction η = 0.05.

[−561.35,+561.35]
√
me a0. We treat ensembles up to

N = 4 via the MCTDH method with single particle
functions (SPFs), ns = nc = 10. For ensembles with
4 < N ≤ 20, we employ the ML-MCTDH method with
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converged trees (max. natural population ≤ 10−4) for all
N as displayed in Fig.S3. We employ the same DVR with
identical number of primitive basis functions as above in-
dependent of ensemble size, N , but N -dependent num-
bers of SPFs, as shown next to bonds in ML trees. The
latter is a result of different entanglement structure in
the full vibro-polaritonic wave packet for different N .

III. INITIAL STATE AND
VIBRO-POLARITONIC DENSITY OF STATES

We analyze the initial state (cf. Eq.(9) in main text)
in terms of its vibro-polaritonic contributions, which we
access by means of the vibro-polaritonic density of states
(DOS)

σ(~ω) =

∫ 2tf

0

C(t) eiE t/~dt , (III1)

=
∑
p

| 〈Ψ0|Ψp〉 |2 δ(E − Ep)) . (III2)

Here, C(t) = 〈Ψ(t/2)|Ψ(t/2)〉 is the autocorrelation func-
tion and, tf , is the final propagation time, which we here
chose as, tf = 3000 fs. Further, we have vibro-polaritonic
eigenergies, Ep, and corresponding eigenstates, |Ψp〉, sat-
isfying the time-independent Schrödinger equation(

ĤS + ĤC + ĤSC + ĤDSE

)
|Ψp〉 = Ep |Ψp〉 . (III3)

which we solve for the ground state by imaginary time
evolution employing the MCTDH method. We provide
an illustrative discussion for the molecular dimer, N = 2,
interacting with the cavity mode.

FIG. S4. Vibro-polaritonic density of states, σ(~ω), for N = 2
hydrogen transfer systems strongly coupled to a single cav-
ity mode as obtained for initial states propagated under the
action of the effective Pauli-Fierz Hamiltonian with (blue)
and without (orange) DSE-induced dipole-dipole interaction.
Vibro-polaritonic ground state energies of 1867 cm−1 (blue)
and 1374 cm−1 (orange) are indicated by dashed vertical lines.

In Fig.S4, we show σ(~ω) for two different scenarios,
where we either account for the full DSE contribution (cf.
Eq.(6) main text) including the dipole-dipole interaction
(blue graph) or where we exclude the dipole-dipole in-
teraction and keep only the diagonal DSE contributions
(orange graph). We first realize that in both cases, the
envelope approximately reflects a Poisson distribution,
which by recalling the cPES shift along the cavity dis-
placement coordinate axis can be rationalized as follows:
Instead of considering a shift of the cPES along the neg-
ative xc-axis relative to the initial state’s location, we
can understand the initial state to be shifted relative to
the cPES in positive xc-direction instead. A shift of the
cavity ground state along xc results in a coherent state,
whose components in terms of cavity number states fol-
low a Poisson distribution[6]

P (nc) = e−〈n̂c〉 〈n̂c〉
nc

nc!
, (III4)

with photon number, nc, and length-gauge photon num-
ber expectation value, 〈n̂c〉 (cf. section IV below). The
maximum of P (nc) is given by, 〈n̂c〉, which we found nu-
merically for the fully interacting situation to be initially,
〈n̂c〉0 = 7.7 (cf. Fig.S5 for N = 2). The correspond-
ing density of states is given in Fig.S4 in blue, with the
peak of maximal intensity located at 2752 cm−1 and the
first peak corresponding to the vibro-polaritonic ground
state located at 1867 cm−1 (indicated by a vertical, blue
dashed line). The latter is solely determined by the cav-
ity ground state with nc = 0 photons. Thus, we find for
the maximum intensity peak and a cavity mode energy of
~ωc = 126.5 cm−1 approximately nc = 7 photons, which
agrees well with the numerically obtained 〈n̂c〉0 = 7.7.
Deviations can be traced back to the strong coupling of
cavity mode and molecular systems, such that the initial
state is actually not a bare coherent state in the cavity
subspace but a correlated light-matter hybrid state with
coherent character in the cavity mode.

We eventually address differences between blue and
orange graphs in Fig.S4 due to DSE-induced dipole-
dipole interactions. We observe the approximate result
in orange to be red-shifted relative to the fully inter-
acting result in blue, with ground state energy indi-
cated by a vertical, orange dashed line. We attribute
this negative energy shift to an artificial effect induced
by the light-matter interaction contribution in the trun-
cated Hamiltonian, which is compensated for when fully
accounting for the DSE term[7]. Note, global energy
shifts are not accessible in experiment, where only rel-
ative energies are measured and the effects of a global
shift cancel. Further, when the full DSE term is in-
cluded, cavity-induced dipole-dipole interactions between
hydrogen transfer systems lead to the formation of addi-
tional vibro-polaritonic states. This can be interpreted
as a cavity-induced pseudo Kasha effect, which emerges
from light-matter interaction involving transverse cavity
fields. We shall point out, that the molecular Kasha effect
results from molecular dipole-dipole interactions based
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on longitudinal electric field components (Coulomb-type
interaction)[8].

IV. PHOTON NUMBER OPERATOR IN
LENGTH-GAUGE REPRESENTATION

In the main text, the expectation value of the photon
number operators was used to analyze the cavity-induced
H-transfer dynamics. The single-mode photon number
operator, n̂c = â†câc, can be written in terms of the single-
mode cavity Hamiltonian, ĤC = ~ωc

(
â†câc + 1

2

)
, as

n̂c = â†câc =
1

~ωc
ĤC −

1

2
, (IV1)

where, â†c and âc are bosonic photon creation and annihi-
lation operators, respectively. In length gauge represen-
tation, n̂c, takes the form[7, 9–11]

S† U† â†câc U S =
1

~ωc

(
S† U† ĤC U S

)
− 1

2
, (IV2)

with unitary operator, U = exp
[

i
~ Â d(q)

]
, mediat-

ing the Power-Zienau-Woolley (PZW) transformation
as generated by the molecular dipole moment, d(q),
and the transverse (single-mode) vector potential, Â =
g
ωc

(
â†c + âc

)
. A second unitary rotation mediated by,

S = exp
[
iπ2 â

†
câc
]
, acts exclusively on the cavity mode

subspace and provides a real light-matter interaction
term, ĤSC . Under U and S, photon creation and an-
nihilation operators transform as

S† U† â†c U S = −i â†c −
i

~
g

ωc
d(q) , (IV3)

S† U† âU S = +i âc +
i

~
g

ωc
d(q) . (IV4)

Employing the latter identities, the transformed number
operator turns with

~ωc
(
S† U† â†câc U S

)
= ~ωc

(
−i â†c −

i

~
g

ωc
d(q)

)(
+i âc +

i

~
g

ωc
d(q)

)
, (IV5)

= ~ωc
(
â†câc +

g d(q)

~ωc
(
â†c + âc

)
+

g2

(~ωc)2
d2(q)

)
, (IV6)

= ~ωc â†câc + g d(q)
(
â†c + âc

)
+

g2

~ωc
d2(q) (IV7)

as well as identities, xc =
√

~
2ωc

(
â†c + âc

)
, and, p̂c = i

√
~ωc

2

(
â†c − âc

)
, into

S† U† â†câc U S =
1

~ωc

 p̂2c2 +
ω2
c

2
x2c︸ ︷︷ ︸

=ĤC

+

√
2ωc
~

g d(q)xc︸ ︷︷ ︸
=ĤSC

+
g2

~ωc
d2(q)︸ ︷︷ ︸

=ĤDSE

− 1

2
, (IV8)

=
1

~ωc

(
ĤC + ĤSC + ĤDSE

)
− 1

2
. (IV9)

This latter expression enters the cavity photon number
expectation value, 〈n̂c〉, in Eq.(14) of the main text.
The same arguments generalize to n̂c for ensembles of
N molecules as the unitary operator mediating the PZW

transformation, UN =
∏N
i Ui, factorizes due the form

of the ensemble dipole function, d(q) =
∑N
i d(qi). In

Fig.S5, we eventually provide the time-evolution of the
bare photon number operator expectation value without
normalization to the initial value.
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