Electronic Supplementary Material

Mesoscale Study of Crystal Plane Effects of Ni Catalysts on CO₂ Hydrogenation

Xiaolei Wang¹, Ning Liu², Ruinian Xu², Biaohua Chen^{2,*}, Chengna Dai², Gangqiang Yu²

1 College of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013,

China

2 College of Environment and Energy Engineering, Beijing University of Technology, Beijing

100124, China

*. Corresponding author: Biaohua Chen

Email: chenbh@bjut.edu.cn

Contents

- S1. Detailed equations of CO₂ conversion and CH₄ selectivity
- S2. Calculation method of reaction rate for elementary reaction
- S3. Microkinetic modeling

S4. Theoretical CH₄ selectivity

Fig. S1. Influence of external diffusion on CO₂ hydrogenation over Ni-BN at 325 °C.

Fig. S2. Morphologies of Ni synthesized under same temperature of 150 °C and time

of 3 h but various H_2 pressure: (a) 0 bar, (b) 1 bar, (c) 6 bar, (d) 10 bar, (e) 14 bar, (f) 20 bar.

Fig. S3. Morphologies of 14 bar Ni synthesized under same temperature of 150 °C and various time: (a) 0.25 h, (b) 0.5 h, (c) 1 h.

Fig. S4. Morphologies of 14 bar Ni synthesized under same time of 3h and various temperature: (a) 130 °C, (b) 150 °C, (c) 170 °C.

Fig. S5. Activity of CO_2 hydrogenation of Ni catalysts synthesized at (a, b) various synthesis time, (c, d) various synthesis temperature.

Fig. S6. Arrhenius plots of Ni-NP and Ni-BN: (a) CH₄, (b) CO.

Fig. S7. TPSR-MS profiles for (a) Ni-NP and (b) Ni-BN catalysts.

Fig. S8 In-situ DRIFTS results of CO₂ hydrogenation reaction on (a) Ni-NP and (b) Ni-

BN catalyst being mixed with inter SiO_2 with CO_2 : $H_2 = 1 : 4$.

Fig. S9. Adsorption energies of all intermediates in CO_2 hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

Fig. S10. Top and side view of the preferred adsorption sites of all intermediates in CO₂ hydrogenation on Ni(111) surface.

Fig. S11. Top and side view of the preferred adsorption sites of all intermediates in CO₂ hydrogenation on Ni(322) surface.

Fig. S12. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(100) surface.

Fig. S13. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(110) surface.

Fig. S14. Reaction potential energy diagrams via formate route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S15. Reaction potential energy diagrams via CO_2 direct dissociate + CO hydrogenation route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S16. Reaction potential energy diagrams via carboxyl route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S17. Reaction potential energy diagrams via C hydrogenation route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S18. Calculated steady-state reaction rates of step R3, R14 and step R20 over (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110) facets.

Fig. S19. Potential energy diagram of optimal pathway for the formation of CH_4 and CO on Ni(111) and Ni(100) facets.

Fig. S20. Calculated reaction rates of CH_4 and CO formation over (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110) facets.

Fig. S21. Comparison of CH_4 selectivity simulated by microkinetic model and experimental results.

Table S1 Elementary reaction steps and rate equations of CO₂ hydrogenation reaction.

Table S2 Preferred adsorption sites and adsorption energies of all intermediates in CO_2 hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

Table S3 Reactions energies (E_a) and active barriers (ΔE) in CO₂ hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

Table S4 Reaction rate (s⁻¹) of CH₄ and CO formation at different temperatures.

Table S5 Comparison of experimental and calculated reaction rate (s^{-1}) of CH_4 and CO formation.

S1. Detailed equations of CO₂ conversion and CH₄ selectivity

After gas chromatography, it was found that the gas phase products were CH_4 and CO, and the liquid was H_2O . The correction factors for carbon monoxide and methane relative to argon were 1.04 and 2.15, respectively. The CO_2 conversion (X_A) and CH_4 selectivity (S_i) were calculated as

$$X_{A} = \frac{n_{A}^{0} - n_{A}}{n_{A}^{0}} \times 100\% = \frac{A_{A}^{0} / A_{s}^{0} - A_{A} / A_{s}}{A_{A}^{0} / A_{s}^{0}} \times 100\%$$
(S1)

$$S_i = \frac{A_i \times F_{i/s}}{A_i \times F_{i/s} + A_j \times F_{j/s}} \times 100\%$$
(S2)

where A_A^0 / A_s^0 was the peak area ratio of CO₂ and internal standard Ar in the reaction raw material gas, and A_A / A_s was the peak area ratio of CO₂ and internal standard Ar in the mixed gas after the reaction. A_i and A_j represented the peak areas of CO and CH₄, respectively, and $F_{i/s}$ and $F_{j/s}$ represented the relative correction factors of CO and CH₄, respectively.

The turnover frequency (TOF) was evaluated using 0.02-0.1 g catalyst, and the gas velocity was adjusted to keep the CO_2 conversion rate below 20%.

$$TOF(s^{-1}) = \frac{X_{CO_2} \times F_{CO_2}}{m_{cat} \times M_s}$$
(S3)

 F_{CO2} represented the flow rate of carbon dioxide in the feed gas (s⁻¹), and M_s was the number of active sites per unit mass of the catalyst. The active sites were measured via CO chemisorption, assuming that one CO molecule was adsorbed on one single Ni site.[1-3]

The activation energies of CO₂ conversion or CH₄ generation were calculated from the slope of Arrhenius plot 'lnTOF~1000/T' in Fig. S6. Compared with the Arrhenius equation below, the activation energy Ea (kJ·mol⁻¹) should be the slop of Arrhenius plot multiplied by R.

$$\ln TOF = \ln A - \frac{E_a}{RT}$$
(S4)

In which *A* presented the pre-exponential factor, *Ea* meant the activation energy and R meant the gas constant R (8.314 J·(mol·K)⁻¹).

S2. Calculation method of reaction rate for elementary reaction

The forward / reverse pre-exponential factors (v_{for} and v_{rev}) for reaction X+Y \rightarrow Z were determined as

$$v_{for} = \prod_{i=1}^{3N} v_i^{IS} / \prod_{j=1}^{3N-1} v_j^{TS}$$

$$v_{rev} = \prod_{i=1}^{3N} v_i^{FS} / \prod_{j=1}^{3N-1} v_j^{TS}$$
(S5)
(S6)

where V_i^{IS} and V_i^{FS} were vibrational frequencies at initial and final state, and V_j^{TS} was vibrational frequencies at transition state[4].

Thus the rate constant (k_n) was calculated as

$$k_n = v \exp(-E_a / k_B T) \tag{S7}$$

where E_a was the activation energy barrier and k_B was Boltzmann constant.

For the adsorption process, the rates would be written as[5]

$$k_{ads}^{i} = s_0 P_i A_i / \sqrt{2\pi m_i k_B T}$$
(S8)

where s_0 , P_i (Pa) and m_i (kg) were the sticking coefficient, partial pressure and molecular mass of species I, respectively; A_i (m²) was the area of adsorption site.

For the desorption process, the rates were calculated based on the harmonic transition state theory (HTST) and it could be derived as Arrhenius equation[6, 7]:

$$k_{des} = \frac{k_B T}{h} e^{n_1} \left(\frac{P^{\Theta}}{RT}\right)^{1-n} \exp\left(\frac{\Delta_r S_m^{\Theta} \left(P^{\Theta}\right)}{R}\right) \exp\left(\frac{-E_a}{RT}\right)$$
(S9)

$$\Delta_{r}S_{m}^{\Theta}\left(P^{\Theta}\right) = S_{TS}^{\Theta}\left(P^{\Theta}\right) - S_{RS}^{\Theta}\left(P^{\Theta}\right)$$
(S10)

where *n* and *n*₁ represented the coefficient amount of the reactants and the coefficient amount of the gaseous reactants. For the condensed phase reaction, the value of *n*₁ was 1. *h* and *R* were Plank constant and gas constant, respectively. The entropy $\Delta_r S_m^{\Theta} \left(P^{\Theta} \right)$ contained three contributions, translational, rotational, and vibrational distributions, which was obtained from the frequency calculations with DFT at 1 atm and 298.15 K.

S3. Microkinetic modeling

As shown in Fig. S7 and Table S1, the reaction network was divided into 31 elementary reaction steps. Here in, according to the actual experimental condition, the partial pressure of H_2 and CO_2 (*p*1 and *p*2) were set to be 60,000 Pa and 15,000 Pa, respectively. The reaction rates of elementary reactions have been expressed by ki, pi and y(i), and the parameters y(i) would obtained by solving 22 equations below. Therefore the steady state reaction rate of each elementary step and the intermediate surface coverage ratios could be calculated by the MATLAB program.

y(i)	Represented coverage	y(i)	Represented coverage
y(1)	$ heta_*$	y(12)	$ heta_{ ext{HCOH}*}$
y(2)	$ heta_{ ext{H}^*}$	y(13)	$ heta_{{ m CH_2}*}$
y(3)	$ heta_{{ m CO}_2*}$	y(14)	$ heta_{ m co*}$
y(4)	$ heta_{ m HCOO^*}$	y(15)	$ heta_{\scriptscriptstyle \mathrm{O}^*}$
y(5)	$ heta_{\mathrm{H}_{2}\mathrm{COO}^{*}}$	y(16)	$ heta_{\mathrm{C}^*}$
y(6)	$\theta_{\rm H_2COOH^*}$	y(17)	$ heta_{ ext{cH}^*}$
y(7)	$ heta_{_{ m H_2CO^*}}$	y(18)	$ heta_{ m cooH^*}$
y(8)	$ heta_{ ext{oH}^*}$	y(19)	$ heta_{ m COH^*}$
y(9)	$ heta_{ m HCOOH^*}$	y(20)	$ heta_{ m COHOH*}$
y(10)	$ heta_{ m HCO^*}$	y(21)	$ heta_{{ m CH_3}*}$
y(11)	$ heta_{ ext{H}_2 ext{COH}^*}$	y(22)	$\theta_{\rm H_2O^*}$

Reaction rate equations in MATLAB program:

$$r1 = k1p1*y(1)^{2} - k_{1}*y(2)^{2};$$

$$r2 = k2p2*y(1) - k_{2}*y(3);$$

$$r3 = k3*y(3)*y(2) - k_{3}*y(4)*y(1);$$

$$r4 = k4*y(4)*y(2) - k_{4}*y(5)*y(1);$$

$$r5 = k5*y(5)*y(2) - k_{5}*y(6)*y(1);$$

Equations to be solved in MATLAB program:

dy(2) = 2*r1 - r3 - r4 - r5 - r7 - r9 - r10 - r11 - r12 - r15 - r17 - r18 - r20 - r22 - r23 - r25 - r26 - r27 - r28 - r29;

$$\begin{aligned} & dy(3) = r2 - r3 - r14 - r20; \\ & dy(4) = r3 - r4 - r7; \\ & dy(5) = r4 - r5; \\ & dy(6) = r5 - r6; \\ & dy(7) = r6 + r9 - r10; \\ & dy(8) = r6 + r8 + r13 + r19 + r21 + r24 + r28 - r29; \\ & dy(9) = r7 - r8; \\ & dy(10) = r8 - r9 - r11 + r15; \\ & dy(10) = r8 - r9 - r11 + r15; \\ & dy(11) = r10 + r12 - r13; \\ & dy(12) = r11 - r12 - r19 + r25; \\ & dy(13) = r13 + r18 - r26; \\ & dy(14) = r14 - r15 - r16 + r21 - r22 - r31; \\ & dy(15) = r14 + r16 - r28; \\ & dy(16) = r16 - r17; \\ & dy(17) = r17 - r18 + r19; \\ & dy(18) = r20 - r21 - r23; \\ & dy(20) = r23 - r24; \\ & dy(21) = r26 - r27; \\ & dy(21) = r29 - r30; \\ & dy(1) = - dy(2) - dy(3) - dy(4) - dy(5) - dy(6) - dy(7) - dy(8) - dy(9) - dy(10) - dy(11) - dy(12) - dy(13) - dy(14) - dy(15) - dy(16) - dy(17) - dy(18) - dy(19) - dy(20) - dy(21) - dy(22); \end{aligned}$$

S4. Theoretical CH₄ selectivity

The theoretical selectivity of CH₄ was obtained by equation S11:

$$S_{\rm CH_4} = \frac{r_{\rm CH_4}}{r_{\rm CH_4} + r_{\rm CO}} \times 100\%$$
(S11)

 $S_{\rm CH_4}$ was the selectivity of CH₄, $r_{\rm CH_4}$ and $r_{\rm CO}$ represented the generation rate of CH₄

and CO, respectively.

Fig. S2. Morphologies of Ni synthesized under same temperature of 150 °C and time of 3 h but various H₂ pressure: (a) 0 bar, (b) 1 bar, (c) 6 bar, (d) 10 bar, (e) 14 bar, (f) 20 bar.

Fig. S3. Morphologies of 14 bar Ni synthesized under same temperature of 150 °C and various time: (a) 0.25 h, (b) 0.5 h, (c) 1 h.

Fig. S4. Morphologies of 14 bar Ni synthesized under same time of 3h and various temperature: (a) 130 °C, (b) 150 °C, (c) 170 °C.

Fig. S5. Activity of CO_2 hydrogenation of Ni catalysts synthesized at (a, b) various synthesis time, (c, d) various synthesis temperature.

Fig. S6. Arrhenius plots of Ni-NP and Ni-BN: (a) CH₄, (b) CO.

Fig. S7. TPSR-MS profiles for (a) Ni-NP and (b) Ni-BN catalysts.

Fig. S8 In-situ DRIFTS results of CO₂ hydrogenation reaction on (a) Ni-NP and (b) Ni-BN catalyst being mixed with inter SiO₂ with CO₂ : $H_2 = 1 : 4$.

Fig. S9. Adsorption energies of all intermediates in CO_2 hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

Fig. S10. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(111) surface.

Fig. S11. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(322) surface.

СОНОН

Fig. S12. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(100) surface.

Fig. S13. Top and side view of the preferred adsorption sites of all intermediates in CO_2 hydrogenation on Ni(110) surface.

Fig. S14. Reaction potential energy diagrams via formate route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S15. Reaction potential energy diagrams via CO_2 direct dissociate + CO hydrogenation route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S16. Reaction potential energy diagrams via carboxyl route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S17. Reaction potential energy diagrams via C hydrogenation route: (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110).

Fig. S18. Calculated steady-state reaction rates of step R3, R14 and step R20 over (a) Ni(111), (b) Ni(322), (c) Ni(100) and (d) Ni(110) facets.

Fig. S19. Potential energy diagram of optimal pathway for the formation of CH_4 and CO on Ni(111) and Ni(100) facets.

Fig. S21. Comparison of CH₄ selectivity simulated by microkinetic model and experimental results.

No.	Elementary reaction steps	Reaction rate equations
R1	$\mathrm{H_2}(g) + 2^* \leftrightarrow 2\mathrm{H}^*$	$r_{1} = k_{1} P_{H_{2}} \theta_{*}^{2} - k_{-1} \theta_{H^{*}}^{2}$
R2	$CO_2(g) + * \leftrightarrow CO_2 *$	$r_2 = k_2 P_{\rm CO_2} \theta_* - k_{-2} \theta_{\rm CO_2} *$
R3	CO_2 *+H* \leftrightarrow HCOO*+*	$r_3 = k_3 \theta_{\text{CO}_2*} \theta_{\text{H}*} - k_{-3} \theta_{\text{HCOO}*} \theta_*$
R4	$\mathrm{HCOO}^{*}\mathrm{+H}^{*} \leftrightarrow \mathrm{H_{2}COO}^{*}\mathrm{+}^{*}$	$r_4 = k_4 \theta_{\rm HCOO^*} \theta_{\rm H^*} - k_{-4} \theta_{\rm H_2COO^*} \theta_*$
R5	$\mathrm{H_{2}COO}*\mathrm{+H}* \leftrightarrow \mathrm{H_{2}COOH}*\mathrm{+}*$	$r_{5} = k_{5} \theta_{\mathrm{H}_{2}\mathrm{COO}^{*}} \theta_{\mathrm{H}^{*}} - k_{-5} \theta_{\mathrm{H}_{2}\mathrm{COOH}^{*}} \theta_{*}$
R6	$\mathrm{H_{2}COOH}*+*\leftrightarrow\mathrm{H_{2}CO}*+\mathrm{OH}*$	$r_6 = k_6 \theta_{\mathrm{H_2COOH}*} \theta_* - k_{-6} \theta_{\mathrm{H_2CO}*} \theta_{\mathrm{OH}*}$
R7	$\mathrm{HCOO}^{*}\mathrm{+H}^{*} \leftrightarrow \mathrm{HCOOH}^{*}\mathrm{+}^{*}$	$r_{7} = k_{7} \theta_{\rm HCOO*} \theta_{\rm H^{*}} - k_{-7} \theta_{\rm HCOOH^{*}} \theta_{*}$
R8	$HCOOH * + * \leftrightarrow HCO * + OH *$	$r_8 = k_8 \theta_{\rm HCOOH^*} \theta_* - k_{-8} \theta_{\rm HCO^*} \theta_{\rm OH^*}$
R9	$\mathrm{HCO}^{*}\mathrm{+}\mathrm{H}^{*} \leftrightarrow \mathrm{H_{2}CO}^{*}\mathrm{+}^{*}$	$r_9 = k_9 \theta_{\rm HCO*} \theta_{\rm H*} - k_{-9} \theta_{\rm H_2CO*} \theta_*$
R10	$\mathrm{H_2CO}^*\mathrm{+H}^* \leftrightarrow \mathrm{H_2COH}^*\mathrm{+}^*$	$r_{10} = k_{10} \theta_{\mathrm{H_2CO}*} \theta_{\mathrm{H}*} - k_{-10} \theta_{\mathrm{H_2COH}*} \theta_*$
R11	$HCO*+H* \leftrightarrow HCOH*+*$	$r_{11} = k_{11}\theta_{\mathrm{HCO}*}\theta_{\mathrm{H}*} - k_{-11}\theta_{\mathrm{HCOH}*}\theta_{*}$
R12	$\mathrm{HCOH}{}^*\mathrm{+}\mathrm{H}^* {\leftrightarrow} \mathrm{H_2COH}{}^*\mathrm{+}{}^*$	$r_{12} = k_{12}\theta_{\mathrm{HCOH}*}\theta_{\mathrm{H}*} - k_{-12}\theta_{\mathrm{H}_{2}\mathrm{COH}*}\theta_{*}$
R13	$\mathrm{H_2COH}{}^*\!+\!{}^*\!\leftrightarrow\!\mathrm{CH_2}{}^*\!+\!\mathrm{OH}{}^*$	$r_{13} = k_{13} \theta_{\rm H_2COH^*} \theta_* - k_{-13} \theta_{\rm CH_2^*} \theta_{\rm OH^*}$
R14	$CO_2 *+* \leftrightarrow CO*+O*$	$r_{14} = k_{14}\theta_{\mathrm{CO}_2*}\theta_* - k_{-14}\theta_{\mathrm{CO}*}\theta_{\mathrm{O}*}$
R15	$CO*+* \leftrightarrow HCO*+*$	$r_{15} = k_{15}\theta_{\rm CO^*}\theta_{\rm H^*} - k_{-15}\theta_{\rm HCO^*}\theta_*$
R16	$CO*+*\leftrightarrow C*+O*$	$r_{16} = k_{16} \theta_{\rm CO^*} \theta_* - k_{-16} \theta_{\rm C^*} \theta_{\rm O^*}$
R17	$C^*+H^*\leftrightarrow CH^*+^*$	$r_{17} = k_{17} \theta_{\mathrm{C}^*} \theta_{\mathrm{H}^*} - k_{-17} \theta_{\mathrm{CH}^*} \theta_*$
R18	$\mathrm{CH}^{*}\mathrm{+}\mathrm{H}^{*} \mathop{\leftrightarrow} \mathrm{CH}_{2}^{*}\mathrm{+}^{*}$	$r_{18} = k_{18} \theta_{\mathrm{CH}*} \theta_{\mathrm{H}*} - k_{-18} \theta_{\mathrm{CH}_2*} \theta_*$
R19	$\mathrm{HCOH}^*+^*\leftrightarrow\mathrm{CH}^*+\mathrm{OH}^*$	$r_{19} = k_{19}\theta_{\mathrm{HCOH}*}\theta_* - k_{-19}\theta_{\mathrm{CH}*}\theta_{\mathrm{OH}*}$
R20	CO_2 *+H* \leftrightarrow COOH*+*	$r_{20} = k_{20}\theta_{\mathrm{CO}_2*}\theta_{\mathrm{H}*} - k_{-20}\theta_{\mathrm{COOH}*}\theta_*$
R21	$COOH*+* \leftrightarrow CO*+OH*$	$r_{21} = k_{21} \theta_{\text{COOH}*} \theta_* - k_{-21} \theta_{\text{CO}*} \theta_{\text{OH}*}$
R22	$CO*+H*\leftrightarrow COH*+*$	$r_{22} = k_{22}\theta_{\mathrm{CO}*}\theta_{\mathrm{H}*} - k_{-22}\theta_{\mathrm{COH}*}\theta_{*}$
R23	$\mathrm{COOH}^*\mathrm{+}\mathrm{H}^*\leftrightarrow\mathrm{COHOH}^*\mathrm{+}^*$	$r_{23} = k_{23}\theta_{\text{COOH}*}\theta_{\text{H}*} - k_{-23}\theta_{\text{COHOH}*}\theta_{*}$
R24	$\operatorname{COHOH}^{*}\!$	$r_{24} = k_{24} \theta_{\text{COHOH}*} \theta_* - k_{-24} \theta_{\text{COH}*} \theta_{\text{OH}*}$
R25	$\mathrm{COH}{}^*\mathrm{+}\mathrm{H}^* \leftrightarrow \mathrm{HCOH}{}^*\mathrm{+}{}^*$	$r_{25} = k_{25} \theta_{\text{COH}*} \theta_{\text{H}*} - k_{-25} \theta_{\text{HCOH}*} \theta_{*}$
R26	$\operatorname{CH}_2 {}^* {+} \operatorname{H}^* \longleftrightarrow \operatorname{CH}_3 {}^* {+} {}^*$	$r_{26} = k_{26} \theta_{\mathrm{CH}_2} * \theta_{\mathrm{H}^*} - k_{-26} \theta_{\mathrm{CH}_3} * \theta_*$
R27	$\mathrm{CH}_{3}^{*}\mathrm{+H}^{*}\mathrm{\rightarrow}\mathrm{CH}_{4}^{}(\mathrm{g})\mathrm{+}\mathrm{2}^{*}$	$r_{27} = k_{27} \theta_{\mathrm{CH}_3*} \theta_{\mathrm{H}*}$
R28	$\mathrm{O}^{*}\!+\!\mathrm{H}^{*}\!\leftrightarrow\!\mathrm{O}\mathrm{H}^{*}\!+\!^{*}$	$r_{28} = k_{28}\theta_{\mathrm{O}^*}\theta_{\mathrm{H}^*} - k_{-28}\theta_{\mathrm{OH}^*}\theta_*$
R29	$\mathrm{OH}^{*}\mathrm{+}\mathrm{H}^{*} \mathop{\leftrightarrow} \mathrm{H}_{2}\mathrm{O}^{*}\mathrm{+}^{*}$	$r_{29} = k_{29}\theta_{\rm OH^*}\theta_{\rm H^*} - k_{-29}\theta_{\rm H_2O^*}\theta_{\rm *}$
R30	$\mathrm{H_2O^*}\!\rightarrow\!\mathrm{H_2O}(\mathrm{g})\!+\!*$	$r_{30} = k_{30} \theta_{\rm H_2O^*}$
R31	$CO^* \rightarrow CO(g) + *$	$r_{31} = k_{31} \theta_{\rm CO*}$

Table S1 Elementary reaction steps and rate equations of CO_2 hydrogenation reaction.

	Ni(111)		Ni(Ni(322)		100)	Ni(110)	
Intermediates	Site	$E_{\rm ads}^{\rm ZPE}$	Site	$E_{\rm ads}^{\rm ZPE}$	Site	$E_{\rm ads}^{\rm ZPE}$	Site	$E_{\rm ads}^{\rm ZPE}$
Н	Fcc	-0.48	Η	-0.53	Bri	-0.50	Η	-0.35
С	Нср	-6.66	Η	-7.71	Η	-8.10	Η	-7.36
Ο	Fcc	-7.01	Η	-7.10	Η	-7.35	Η	-6.90
ОН	Fcc	-3.69	Bri	-4.14	Η	-3.91	Bri	-4.07
H_2O	Тор	-0.23	Тор	-0.45	Тор	-0.32	Тор	-0.41
СО	Нср	-1.87	Н	-1.94	Н	-1.92	Bri	-1.88
CO_2	Bri	0.20	Bri	-0.36	Н	-0.27	Н	-0.52
HCOO	Bri	-2.93	Bri	-3.65	Bri	-3.27	Bri	-3.65
СООН	Bri	-2.50	Bri	-2.93	Н	-3.03	Bri	-2.89
H ₂ COO	Bri	-3.49	Bri	-4.19	Н	-4.81	Bri	-4.25
НСООН	Тор	-0.40	Bri	-0.72	Bri	-0.51	Тор	-0.71
СОНОН	Тор	-2.01	Bri	-2.03	Bri	-2.10	Bri	-1.99
СН	Fcc	-6.67	Н	-6.67	Н	-7.33	Н	-6.77
CH_2	Fcc	-4.68	Н	-4.94	Н	-5.06	Н	-4.79
CH ₃	Fcc	-2.43	Bri	-2.75	Bri	-2.38	Н	-1.93
CH_4	Fcc	-0.21	Н	-0.27	Н	-0.21	Н	-0.20
HCO	Fcc	-2.52	Н	-2.76	Н	-3.09	Bri	-2.77
H ₂ CO	Fcc	-0.63	Н	-0.99	Н	-1.33	Bri	-1.11
H ₂ COOH	Bri	-2.16	Bri	-2.82	Bri	-2.46	Тор	-2.78
СОН	Нср	-4.72	Н	-4.76	Н	-5.08	Н	-4.30
НСОН	Bri	-2.86	Н	-3.23	Н	-3.07	Н	-3.23
H ₂ COH	Fcc	-1.94	Тор	-2.49	Bri	-2.08	Bri	-2.32

Table S2 Preferred adsorption sites and adsorption energies of all intermediates in CO_2 hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

	Ni(111)		Ni(Ni(322)		Ni(100)		Ni(110)	
Reaction	Ea	ΔE	$E_{\rm a}$	ΔE	$E_{\rm a}$	ΔE	$E_{\rm a}$	ΔE	
R1	0.0	-0.96	0.0	-1.06	0.0	-1.00	0.0	-0.70	
R2	0.0	0.20	0.0	-0.36	0.0	-0.27	0.0	-0.52	
R3	0.88	-0.15	0.82	-0.32	0.89	-0.18	0.72	-0.41	
R4	1.78	1.69	2.47	1.46	1.24	0.74	1.63	1.28	
R5	0.16	-0.20	0.65	-0.16	1.47	1.03	0.43	-0.27	
R6	0.49	-0.22	0.10	-0.37	0.36	-0.87	0.55	-0.22	
R7	0.76	0.65	0.93	0.81	1.09	0.92	0.94	0.84	
R8	0.91	0.21	0.39	-0.45	0.46	-0.54	0.33	-0.45	
R9	0.78	0.56	0.61	0.52	0.61	0.32	0.57	0.19	
R10	0.88	0.37	0.99	0.31	1.41	0.96	0.83	0.36	
R11	1.12	0.79	0.78	0.73	1.64	1.13	1.02	0.53	
R12	0.67	0.18	0.64	0.37	0.51	0.14	0.54	0.06	
R13	0.57	-0.47	0.48	-0.59	0.99	-0.49	0.38	-0.78	
R14	0.14	-0.99	0.86	-0.56	0.29	-0.87	1.04	-0.07	
R15	1.47	1.33	1.30	1.17	1.14	0.71	1.18	1.06	
R16	2.96	1.76	2.49	1.75	1.82	0.05	2.02	1.11	
R17	0.62	-0.59	0.53	-0.43	0.69	0.22	0.57	0.00	
R18	0.53	0.36	0.56	0.23	0.59	0.55	0.55	0.20	
R19	0.47	-0.66	0.47	-0.99	0.27	-1.52	0.07	-1.07	
R20	0.88	0.13	0.95	0.26	0.77	-0.09	0.91	0.21	
R21	0.36	-0.95	0.57	-1.10	0.61	-0.69	0.36	-0.90	
R22	1.95	1.06	1.91	1.10	1.58	0.65	2.16	1.45	
R23	1.02	0.62	1.37	1.05	1.46	1.09	1.26	0.82	
R24	0.94	-0.24	0.60	-1.07	0.44	-0.86	1.00	-0.34	
R25	1.13	1.05	0.88	0.85	1.42	1.11	0.22	0.11	
R26	0.57	-0.05	0.52	-0.08	0.62	0.30	0.80	0.51	
R27	0.89	0.02	0.99	0.45	0.84	0.09	0.65	0.08	
R28	1.05	0.17	0.98	-0.16	1.36	0.43	0.47	-0.43	
R29	1.17	0.39	1.01	0.69	1.27	0.47	1.18	0.48	
R30	0.23	0.0	0.45	0.0	0.32	0.0	0.41	0.0	
R31	1.87	0.0	1.94	0.0	1.93	0.0	1.88	0.0	

Table S3 Reactions energies (E_a) and active barriers (ΔE) in CO₂ hydrogenation reaction on Ni(111), Ni(322), Ni(100) and Ni(110) surfaces.

Temperature / °C		300	325	350	375	400	425	450
Ni(111)	<i>r</i> _{CH4} / s ⁻¹	2.62E-7	7.89E-7	2.18E-6	5.59E-6	1.34E-5	3.02E-5	6.47E-5
	$r_{\rm CO} / {\rm s}^{-1}$	3.51E-7	1.11E-6	3.21E-6	8.63E-6	2.16E-5	5.10E-5	1.14E-4
	$r_{\rm CH4} / { m s}^{-1}$	2.69E-3	6.25E-3	1.35E-2	2.76E-2	5.34E-2	9.83E-2	1.73E-1
INI(322)	$r_{\rm CO} / {\rm s}^{-1}$	1.03E-5	2.95E-5	7.74E-5	1.89E-4	4.31E-4	9.31E-4	1.91E-3
NT(100)	$r_{\rm CH4} / { m s}^{-1}$	2.05E-4	4.15E-4	7.37E-4	1.21E-3	1.89E-3	2.84E-3	4.16E-3
NI(100)	$r_{\rm CO} / {\rm s}^{-1}$	1.79E-4	4.18E-4	8.51E-4	1.58E-3	2.76E-3	4.58E-3	7.32E-3
NE(110)	$r_{\rm CH4} / { m s}^{-1}$	1.97E-2	3.13E-2	4.79E-2	7.09E-2	1.02E-1	1.43E-1	1.96E-1
N1(110)	$r_{\rm CO} / {\rm s}^{-1}$	1.29E-6	3.34E-6	8.01E-6	1.80E-5	3.84E-5	7.76E-5	1.50E-4
Ni-NP	$r_{\rm CH4} / { m s}^{-1}$	6.67E-4	1.09E-3	1.71E-3	2.57E-3	3.76E-3	5.36E-3	7.45E-3
	$r_{\rm CO} / {\rm s}^{-1}$	6.59E-5	1.54E-4	3.14E-4	5.86E-4	1.03E-3	1.71E-3	2.76E-3
Ni-BN	$r_{\rm CH4} / { m s}^{-1}$	2.66E-3	6.17E-3	1.34E-2	2.73E-2	5.27E-2	9.70E-2	1.71E-1
	$r_{\rm CO} / {\rm s}^{-1}$	1.13E-5	3.16E-5	8.16E-5	1.96E-4	4.42E-4	9.47E-4	1.93E-3

Table S4 Reaction rate (s^{-1}) of CH₄ and CO formation at different temperatures.

Tormation.									
	Temperature / °C		300	325	350	375	400	425	450
F	Ni-NP	$r_{\rm CH4} / { m s}^{-1}$	2.19E-4	1.04E-3	4.55E-3	7.02E-3			
		$r_{\rm CO} / {\rm s}^{-1}$	7.36E-5	4.22E-4	1.63E-3	3.83E-3			
Exp.	Ni-BN	$r_{\rm CH4} / { m s}^{-1}$	2.07E-3	4.94E-3	1.39E-2	2.61E-2	1.60E-2		
		$r_{\rm CO} / {\rm s}^{-1}$	3.14E-4	1.05E-3	3.46E-3	1.13E-2	1.79E-2		
Ъ.C.	Ni-NP	$r_{\rm CH4} / { m s}^{-1}$	6.67E-4	1.09E-3	1.71E-3	2.57E-3	3.76E-3	5.36E-3	7.45E-3
		$r_{\rm CO} / {\rm s}^{-1}$	6.59E-5	1.54E-4	3.14E-4	5.86E-4	1.03E-3	1.71E-3	2.76E-3
WIIIO.	Ni-BN	$r_{\rm CH4} / { m s}^{-1}$	2.66E-3	6.17E-3	1.34E-2	2.73E-2	5.27E-2	9.70E-2	1.71E-1
		$r_{\rm CO} / {\rm s}^{-1}$	1.13E-5	3.16E-5	8.16E-5	1.96E-4	4.42E-4	9.47E-4	1.93E-3
kMC	Ni(110)	$r_{\rm CH4} / { m s}^{-1}$	1.62E-4	2.77E-4	4.71E-4	7.15E-4	1.03E-3	1.48E-3	2.05E-3
	Ni-bn	$r_{\rm CH4} / { m s}^{-1}$	9.31E-3	1.66E-2	2.47E-2	3.40E-2	4.52E-2	5.27E-2	6.06E-2

Table S5 Comparison of experimental and calculated reaction rate (s^{-1}) of CH_4 and CO formation.

Exp.: Experiment

Miro.: Mirokinetic modeling

kMC: kinetic Monte Carlo

References

- Italiano, C.;Llorca, J.;Pino, L.;Ferraro, M.;Antonucci, V.; Vita, A. CO and CO₂ methanation over Ni catalysts supported on CeO₂, Al₂O₃ and Y₂O₃ oxides. *Appl. Catal., B* 2020, *264*, 118494.
- Jia, X.;Zhang, X.;Rui, N.;Hu, X.; Liu, C.-j. Structural effect of Ni/ZrO₂ catalyst on CO₂ methanation with enhanced activity. *Appl. Catal., B* 2019, *244*, 159-169.
- [3] Geyer, R.;Hunold, J.;Keck, M.;Kraak, P.;Pachulski, A.; Schödel, R. Methods for determining the metal crystallite size of Ni supported catalysts. *Chem. Ing. Tech.* 2012, 84, 160-164.
- [4] Xu, L.;Mei, D.; Henkelman, G. Adaptive kinetic Monte Carlo simulation of methanol decomposition on Cu(100). J. Chem. Phys. 2009, 131, 244520.
- [5] Cai, Q. X.; Wang, J. G.; Wang, Y. G.; Mei, D. Mechanistic insights into the structure-dependent selectivity of catalytic furfural conversion on platinum catalysts. *AIChE Journal* 2015, *61*, 3812-3824.
- [6] Piskorz, W.;Zasada, F.;Stelmachowski, P.;Diwald, O.;Kotarba, A.; Sojka, Z. Computational and experimental investigations into N₂O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics. J. Phys. Chem. C 2011, 115, 22451-22460.
- [7] Liu, N.;Zhang, R.;Chen, B.;Li, Y.; Li, Y. Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)–BEA zeolites. *J. Catal.* 2012, 294, 99-112.