Fine-Tuning of the Spin-Crossover properties on Fe(III)

Complexes via Ligand design

Supporting Information

Daniel Vidal^[1,2], Jordi Cirera^[1]* and Jordi Ribas-Arino^[2]*

[1] Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain

[2] Departament de Ciència de Materials i Química Física and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028Barcelona, Spain

> e-mail: j.ribas@ub.edu e-mail: jordi.cirera@qi.ub.es

$T_{1/2}$ for $[Fe(L_1^R)(im)_2]^+$ vs. σ_p/σ_m constant correlation	S 1
$T_{1/2}$ for the $[Fe(L_2^{Rp/Rm})(im)_2]^+$ vs. σ_p/σ_m constant correlation	S2
NBO charges correlations for $[Fe(L_1^R)(im)_2]^+$ and $[Fe(L_2^{Rp/Rm})(im)_2]^+$ systems	S3
Mulliken charges correlations for $[Fe(L_1^R)(im)_2]^+$ and $[Fe(L_2^{Rp/Rm})(im)_2]^+$	S4
NBO charges correlations for (L_1^R) and $(L_2^{Rp/Rm})$	S5
HOMO energy vs. $T_{1/2}$ correlations	S6
$T_{1/2}$ for the $[Fe(L_1^R)(im)_2]^+$ vs. electronegativity correlation	S 7
$T_{1/2}$ for the $[Fe(L_2^{Rp/Rm})(im)_2]^+$ vs. electronegativity correlation	S 8
Cartesian geometries for the B3LYP* optimized geometries	S9
Available experimental data	S10

S1. $T_{1/2}$ for $[Fe(L_1^R)(im)_2]^+$ vs. σ_p/σ_m constant correlation

Top, scatterplot between the computed $T_{1/2}$ and the Hammett σ_p constant (R² = 0.51) Bottom, scatterplot between the computed $T_{1/2}$ and the Hammett σ_m constant (R² = 0.13)

S2: $T_{1/2}$ for the $[Fe(L_2^{Rp/Rm})(im)_2]^+$ vs. σ_p/σ_m constant correlation

Left, correlation between the computed $T_{1/2}$ and the σ_p Hammett constant (R² = 0.88), and right, correlation between the computed $T_{1/2}$ and the σ_m Hammett constant (R² = 0.79).

S3. NBO charges correlations for $[Fe(L_1^R)(im)_2]^+$ and $[Fe(L_2^{Rp/Rm})(im)_2]^+$ systems. The following plots provide with correlations of the average NBO charge on donor oxygen atoms, qO(NBO), or on donor nitrogen atoms, qN(NBO), against $T_{1/2}$. The charges of both the high-spin (HS) and low-spin (LS) states are considered.

 $[Fe(L_1^R)(im)_2]^+$ vs $T_{1/2}$

Left-Right, Top-Bottom correlation coefficients: $R^2 = 0.44$, $R^2 = 0.87$, $R^2 = 0.67$ and $R^2 = 0.86$

 $[Fe(L_2^{Rm})(im)_2]^+$ vs $T_{1/2}$

Left-Right, Top-Bottom correlation coefficients: $R^2 = 0.65$, $R^2 = 0.65$, $R^2 = 0.64$ and $R^2 = 0.66$

Left-Right, Top-Bottom correlation coefficients: $R^2 = 0.85$, $R^2 = 0.85$, $R^2 = 0.60$ and $R^2 = 0.19$.

S4 Mulliken charges correlations for $[Fe(L_1^R)(im)_2]^+$ and $[Fe(L_2^{Rp/Rm})(im)_2]^+$. Blue for low-spin (S=1/2) and red for high-spin (S=5/2)

Correlation between the average N Mulliken charge and the spin-state energy gap for the $[Fe(L_1^R)(im)_2]^+$ systems. (R² = 0.67 and 0.82 for high- and low-spin states respectively)

Correlation between the average N Mulliken charge and the spin-state energy gap for the $[Fe(L_2^{Rm})(im)_2]^+$ systems. (R² = 0.82 and 0.76 for high- and low-spin states respectively)

Correlation between the average N Mulliken charge and the spin-state energy gap for the $[Fe(L_2^{Rp})(im)_2]^+$ systems. (R² = 0.86 and 0.48 for high- and low-spin states respectively)

S5 NBO charges correlations for (L_1^R) and $(L_2^{Rp/Rm})$. Circle for the average NBO charge of the N-donor atoms, and squares for the average O-donor atom.

Correlation between the average N (circle) or O (squares) NBO charge of the free L_1^R ligand and the spin-state energy gap for the $[Fe(L_1^R)(im)_2]^+$ systems. ($R^2 = 0.00$ and 0.17 for oxygen and nitrogen respectively)

Correlation between the average N (circle) or O (squares) NBO charge of the free L_2^{Rm} ligand and the spin-state energy gap for the $[Fe(L_2^{Rm})(im)_2]^+$ systems. ($R^2 = 0.01$ and 0.05 for oxygen and nitrogen respectively)

Correlation between the average N (circle) or O (squares) NBO charge of the free L_2^{Rp} ligand and the spin-state energy gap for the $[Fe(L_2^{Rp})(im)_2]^+$ systems. ($R^2 = 0.67$ and 0.58 for oxygen and nitrogen respectively)

S6 HOMO energy vs. $T_{1/2}$ correlations. Red for high-spin, Blue for low-spin and black for the ligand. For the high-spin and low-spin situation, both alpha (circle) and beta (squares) HOMO energies have been used.

Energy of the HOMO vs the computed $T_{1/2}$ for the $[Fe(L_1^R)(im)_2]^+$ systems. R² values are 0.38 and 0.43 (high-spin alpha and beta), 0.39 and 0.45 (low-spin alpha and beta), and 0.07 (free ligand)

Energy of the HOMO vs the computed $T_{1/2}$ for the $[Fe(L_2^{Rm})(im)_2]^+$ systems. R² values are 0.89 and 0.89 (high-spin alpha and beta), 0.91 and 0.92 (low-spin alpha and beta), and 0.78 (free ligand)

Energy of the HOMO vs the computed $T_{1/2}$ for the $[Fe(L_2^{Rp})(im)_2]^+$ systems. R² values are 0.95 and 0.95 (high-spin alpha and beta), 0.95 and 0.95 (low-spin alpha and beta), and 0.71 (free ligand)

S7. $T_{1/2}$ for the $[Fe(L_1^R)(im)_2]^+$ vs. electronegativity correlation

Scatterplot of the substituent electronegativity¹ and the computed $T_{1/2}$ for $[Fe(L_1^R)(im)_2]^+$ (R² = 0.00)

S8. $T_{1/2}$ for the $[Fe(L_2^{Rp/Rm})(im)_2]^+$ vs. electronegativity correlation

Scatterplot of the substituent electronegativity¹ and the computed $T_{1/2}$ for $[Fe(L_2^{Rm})(im)_2]^+$ (left, $R^2 = 0.49$) and $[Fe(L_2^{Rp})(im)_2]^+$ (left, $R^2 = 0.14$) and

S9 A data set collection of computational results is available in the ioChem-BD repository² and can be accessed via https://doi.org/10.19061/iochem-bd-6-197

S10 Available experimental data

Experimental data for the $[Fe(L_1^R)(im)_2]^+$ systems

Substituent	Counterion	Т _{1/2} (К)	Reference
CH ₃ ^a	[BPh₄]⁻	LS at all T	3

^a In addition to ESR data in powder samples, ESR measurements in DMSO frozen solutions show that the compound is LS at 298 K, which is consistent with our predicted $T_{1/2}$ value of 521 K (see Table 1 in the main text).

Experimental data for the $[Fe(L_2^{Rp/Rm})(im)_2]^+$ systems

Substituent	Counterion	$T_{1/2}$ (K)	Reference
Н	PF ₆ -	78	4
Н	CF ₃ SO ₃ -	Gradual transition. $T_{1/2}$ not given	4
Н	BPh4 ⁻	Gradual transition. $T_{1/2}$ not given	4
Н	ClO ₄ -	HS at all T	4
Н	BF_4^-	HS at all T	4
Н	AsF ₆ -	69.4 - 74.0	5
Н	SbF ₆ -	105	6
OMe (<i>meta</i>) ^b	PF ₆ -	~ 150	7
OMe (para) ^b	PF ₆ -	~ 150	7
OMe (meta)	$CF_3SO_3^-$	192-193	8

^b Ethanolic solutions of these compounds feature thermochromism when going from liquid nitrogen temperature to room temperature, which is in line with our predicted $T_{1/2}$ values of 230 K (*meta*, Table 2 in the main text) and 168 K (*para*, Table 3 in the main text).

References:

- 1 S. G. Bratsch, J. Chem. Educ., 1985, 62, 101.
- M. Álvarez-Moreno, C. de Graaf, N. López, F. Maseras, J. M. Poblet and C. Bo,
 J. Chem. Inf. Model., 2015, 55, 95–103.
- Y. Nishida, S. Oshio and S. Kida, *Inorganica Chim. Acta*, 1977, 23, 59–61.
- 4 M. Koike, K. Murakami, T. Fujinami, K. Nishi, N. Matsumoto and Y. Sunatsuki, *Inorganica Chim. Acta*, 2013, **399**, 185–192.
- 5 T. Fujinami, M. Koike, N. Matsumoto, Y. Sunatsuki, A. Okazawa and N. Kojima, *Inorg. Chem.*, 2014, **53**, 2254–2259.
- 6 T. Ueno, K. Miyano, D. Hamada, H. Ono, T. Fujinami, N. Matsumoto and Y.

Sunatsuki, Magnetochemistry, 2015, 1, 72-82.

- 7 T. Fujinami, M. Ikeda, M. Koike, N. Matsumoto, T. Oishi and Y. Sunatsuki, *Inorganica Chim. Acta*, 2015, **432**, 89–95.
- K. Miyano, T. Nishida, H. Ono, D. Hamada, T. Fujinami, N. Matsumoto and Y. Sunatsuki, *Inorganica Chim. Acta*, 2016, 439, 49–54.