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Table S1. Metal centers, oxidation, and spin states in dataset. Spin states are described by spin 
multiplicity, defined as 2S+1 where S is the total spin angular momentum.    

metal Ox Spin multiplicity 
Co 

 
+2 2 

4 
+3 1 

5 
Cr +2 1 

5 
+3 2 

4 
Fe +2 1 

5 
+3 2 

6 
Mn +2 2 

6 
+3 1 

5 
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Table S2. Design space ligands with the net charge (charge), ligand denticity (dent), number of 
atoms (natoms), type of atom connected to the metal (CA) and SMILES string. 

name 
charg
e 

dent
. 

natom
s 

C
A SMILES 

acac -1 2 14 O O=C(C)C=[CH-](O)C  
aceticacidbipyridin
e 0 2 32 N n1ccc(cc1c1nccc(c1)CC(=O)O)CC(=O)O 
acetonitrile 0 1 6 N N#CC 
ammonia 0 1 4 N N  
benzisc 0 1 16 C [C-]#[N+]Cc1ccccc 
bipy 0 2 20 N n1ccccc1c1ncccc1 
carbonyl 0 1 2 C C#[O]  
cyanide -1 1 2 C [C-]#N 

cyanoaceticporphyr
in -2 4 52 N 

N1=C2C=[CH2-][CH-
]1=C(c1[nH]c(cc1)/C=C/1\N=C(/C(=c/3\[nH]/c(=C\2)/cc
3)/C= 
C(/C(=O)O)\C#N)C=C1)/C=C(/C(=O)O)\C#N  

cyanopyridine 0 1 12 N C1(=CCNC=C1)C#N  
en 0 2 12 N NCCN 
formaldehyde 0 1 4 O C=O  
furan 0 1 9 O o1cccc1  
isothiocyanate -1 1 3 N [N-]=C=S 
mebipyridine 0 2 26 N n1ccc(cc1c1nccc(c1)C)C 
mec -2 2 15 O [O-]c1c(cc(cc1)C)[O-]  
methylamine 0 1 7 N CN 
misc 0 1 6 C [C-]#[N+]C 
ox -2 2 6 O C(=O)(C(=O)[O-])[O-] 
phen 0 2 22 N c1cc2ccc3cccnc3c2nc1 
phenisc 0 1 13 C [C-]#[N+]c1ccccc1  
pisc 0 1 25 C [C-]#[N+]c1ccc(C(C)(C)C)cc1 

porphyrin -2 4 36 N 

N1=C2C=[CH2-][CH-
]1=Cc1[nH]c(cc1)/C=C/1\N=C(/C=c/3\[nH]/ 
c(=C\2)/cc3)C=C1  

pph3 0 1 34 P c1c(P(c2ccccc2)c2ccccc2)cccc1  
py 0 1 11 N C1=CCNC=C1 
tbuc -2 2 24 O [O-]c1c(cc(C(C)(C)C)cc1)[O-] 
thiopyridine 0 1 12 N C1(=CCNC=C1)S  
water 0 1 3 O O  
fluoride ion -1 1 1 F [F-] 
iodide ion -1 1 1 I [I-] 
[O-][O-] -2 1 2 O [O-][O-] 
hydroxide -1 1 2 O [OH-] 
phosphine 0 1 4 P [PH3] 
sulfide -2 1 1 S [S--] 

hydrogen sulfide 0 1 3 S [SH2] 
cyanate -1 1 3 N N#C[O-] 
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Table S3. Summary of 23 DFAs used in this work, as motivated in Duan et al.1, including their 
rung on “Jacob’s ladder” of DFT, HF exchange fraction, LRC range-separation parameter (bohr-

1), MP2 correlation fraction, and whether empirical (i.e., D3) dispersion correction is included. 
DFA type exchange 

type 
HF 
exchange 
percentage 

LRC RS 
parameter 
(bohr-1) 

MP2 
correlation 

D3 
dispersion 

BP862,3 GGA GGA -- -- -- no 
BLYP4,5 GGA GGA -- -- -- no 
PBE6 GGA GGA -- -- -- no 
TPSS7 meta-GGA meta-GGA -- -- -- no 
SCAN8 meta-GGA meta-GGA -- -- -- no 
M06-L9 meta-GGA meta-GGA -- -- -- no 
MN15-L10 meta-GGA meta-GGA -- -- -- no 
B3LYP11-13 GGA hybrid GGA 0.200 -- -- no 
B3P862,11 GGA hybrid GGA 0.200 -- -- no 
B3PW9111,14 GGA hybrid GGA 0.200 -- -- no 
PBE015 GGA hybrid GGA 0.250 -- -- no 
ωB97X16 RS hybrid GGA 0.158 0.300 -- no 
LRC-
ωPBEh17 

RS hybrid GGA 0.200 0.200 -- no 

TPSSh7 meta-GGA 
hybrid 

meta-GGA 0.100 -- -- no 

SCAN018 meta-GGA 
hybrid 

meta-GGA 0.250 -- -- no 

M0619 meta-GGA 
hybrid 

meta-GGA 0.270 -- -- no 

M06-2X19 meta-GGA 
hybrid 

meta-GGA 0.540 -- -- no 

MN1520 meta-GGA 
hybrid 

meta-GGA 0.440 -- -- no 

B2GP-
PLYP21 

double hybrid GGA 0.650 -- 0.360 no 

PBE0-DH22 double hybrid GGA 0.500 -- 0.125 no 
DSD-BLYP-
D3BJ23 

double hybrid GGA 0.710 -- 1.000 yes 

DSD-
PBEB95-
D3BJ23 

double hybrid GGA 0.660 -- 1.000 yes 

DSD-
PBEP6-
D3BJ23 

double hybrid GGA 0.690 -- 1.000 yes 
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Figure S1. Mean absolute error (red markers) and fraction of included data (count, blue markers) 
as a function of latent distance for three average curvature models, each corresponding to a 
different GGA functional.  
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Figure S2. The latent distance obtained and averaged over the 10 nearest neighbors for each of 
the test set transition metal complexes to available training data evaluated for the ANN models 
trained to predict the average curvature (top panel), the HOMO energy of the N electron system 
(middle panel) and the LUMO energy of the system with N-1 electrons (lower panel), for each of 
the 23 functionals included in this work. The error bars correspond to one standard deviation of 
the 10-NN-averaged distance in latent space for each functional.  
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Table S4. The mean values (mean) and standard deviations (STD) of the curvature distributions 
of several functionals with different Hartree–Fock exchange fractions (HF fraction). The different 
gray scales represent functional families with similar correlation functional and different HF 
fraction (from left to right, PBE, M06 and dispersion-corrected families). 

Functionals PBE PBE0 PBE0-
DH 

M06-L M06 M06-
2X 

DSD-
BLYP-
D3BJ, 

DSD-
PBEB95-
D3BJ 

DSD-
PBEP86-
D3BJ 

HF fraction 0.00 0.25 0.50 0.00 0.27 0.54 0.66 0.69 0.71 

Mean (eV) 4.54  2.87  1.22 4.40 2.92 1.31 -0.55 -1.20 -1.55 

STD (eV) 0.96 0.74 0.92 0.96 0.72 0.76 1.64 1.77 1.80 

 

 
Figure S3.  The curvature distribution (light blue violin plots) and its mean value (blue markers) 
for dispersion-corrected functionals as a function of the Hartree–Fock (HF) exchange fraction in 
their double hybrid xc functionals. Functionals from left to right (low to higher HF values) 
correspond to DSD-PBEB95-D3BJ, DSD-PBEP86-D3BJ and DSD-BLYP-D3BJ. The dashed line 
corresponds to a linear fit to the mean values, with a slope of -20.15 eV/HFX and R2 of 0.999. The 
vertical bar indicates the full range of the distribution for each functional. 
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Figure S4. An upper triangular matrix colored by Pearson’s r for pairs of 23 functionals for the 
HOMO energy of the N-electron system computed over a set of mononuclear octahedral transition 
metal complexes with Cr, Mn, Fe, or Co centers.  The correlations are grouped by functional family 
from top to bottom or left to right: GGA, meta-GGA, GGA-hybrid, range-separated (RS) hybrid, 
meta-GGA hybrid, and double hybrid. The colorbar range (0.96-1.00) is much smaller for the 
HOMO energy than for the average curvature values in main text Figure 2. 
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Figure S5. An upper triangular matrix colored by Pearson’s r for pairs of 23 functionals for the 
LUMO energy of the N-1-electron system computed over a set of mononuclear octahedral 
transition metal complexes with Cr, Mn, Fe, or Co centers.  The correlations are grouped by 
functional family from top to bottom or left to right: GGA, meta-GGA, GGA-hybrid, range-
separated (RS) hybrid, meta-GGA hybrid, and double hybrid. The colorbar range (0.96-1.00) is 
much smaller for the HOMO energy than for the average curvature values in main text Figure 2. 
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Figure S6. The scaled MAE of the predictions of HOMO of the N-electron system (top panel) and 
the LUMO of the N-1 electron system for KRR (red) and ANN (blue) models.  The functionals are 
grouped by functional family on the x-axis from left to right: GGA (PBE, BLYP, BP86), meta-
GGA (TPSS, SCAN, M06-L, MN15-L), GGA hybrid (B3LYP, B3P86, B3PW91, PBE0), range-
separated hybrid (LRC-wPBEH, wB97x), meta-GGA hybrid (TPSSh, SCAN0, M06, M06-2X, 
MN15), and double hybrid (B2GP-PLYP, PBE0-DH, DSD-BLYP-D3BJ, DSD-PBEB95-D3BJ, 
DSD-PBEP86-D3BJ). 
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Figure S7. The total dataset sizes (including both the training and test set) of the different 
functionals. The theoretical maximum of the dataset size (train and test) is 948 complexes, but not 
all complexes converged for all functionals. Complexes are pruned when the HOMO and LUMO 
error are of opposite sign, leading to inconclusive predictions of curvature from the difference of 
the HOMO and LUMO energies. This occurs most frequently for hybrid functionals. 
 

 
Figure S8. The scaled MAE of the predicted curvature using KRR (red) and ANN (blue) models, 
performed on a dataset of 64 complexes with valid curvature values for all functionals. The 
functionals are grouped by functional family on the x-axis from left to right: GGA (PBE, BLYP, 
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BP86), meta-GGA (TPSS, SCAN, M06-L, MN15-L), GGA hybrid (B3LYP, B3P86, B3PW91, 
PBE0), range-separated hybrid (LRC-wPBEH, wB97x), meta-GGA hybrid (TPSSh, SCAN0, 
M06, M06-2X, MN15), and double hybrid (B2GP-PLYP, PBE0-DH, DSD-BLYP-D3BJ, DSD-
PBEB95-D3BJ, DSD-PBEP86-D3BJ). 
 
 

 
Figure S9.  Stacked bar plot of the fractional weight of 15 features with the highest SHAP values 
in a curvature prediction model, as a function of the most metal-distal atoms for the GGA-hybrid 
(top left panel), meta-GGA (top-right panel), RS-hybrid (bottom-left panel) and meta-GGA 
functional families (bottom-right panel). Error bars reflect the standard deviation across the set of 
DFAs within each functional family.  
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Figure S10. The absolute value of the difference between the DFT-calculated curvature in the HS 
state and the curvature in LS state of Fe(III)(furan)5(methylisocyanide) (top panel) and 
Mn(II)(furan)4(H2O)(CO)  (bottom panel) for GGA, double hybrid, and RS-hybrid  functionals 
labeled from left to right.   
 

 
Figure S11. Stacked bar plot of the fractional weight of 15 features with the highest SHAP values 
in a HOMO energy prediction model of the N-electron system, as a function of the most metal-
distal atoms for GGA-hybrid (top left panel), meta-GGA (top-right panel), RS-hybrid (bottom-left 
panel) and the meta-GGA functional family (bottom-right panel). Error bars are computed from 
the standard deviation across the DFAs for each functional family.  
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Figure S12. Stacked bar plot of the fractional weight of 15 features with the highest SHAP values 
in a LUMO energy prediction model of the N-1 electron system, as a function of the most metal-
distal atoms for GGA-hybrid (top left panel), meta-GGA (top-right panel), RS-hybrid (bottom-left 
panel) and the meta-GGA functional family (bottom-right panel). Error bars are computed from 
the standard deviation across the DFAs for each functional family.  
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Figure S13. The R2 between direct and indirect curvature predictions from ANN models for 
different functionals before applying the latent distance criteria (blue, no filter) and after (red, 
filtered).  
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Figure S14. The ligand distribution of the 20% of the design space complexes with the lowest 
curvatures for RS-hybrid (top left panel) double-hybrid (top right panel), GGA (bottom left panel) 
and meta-GGA (bottom right panel) families ordered by increasing count from left to right for 
each functional family. The counts correspond to each occurrence of the ligand in a complex in 
the 20% of the design space with the lowest curvatures. Error bars correspond to the standard 
deviation between the different functionals in the same family.     
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Figure S15. The metal distribution of the 20% of the design space complexes with the lowest 
curvatures for RS-hybrid (top left panel) double-hybrid (top right panel), GGA (bottom left panel) 
and meta-GGA (bottom right panel) families. The counts correspond to each occurrence of a 
complex in the 20% of the design space with the lowest curvatures. Error bars correspond to the 
standard deviation between the different functionals in the same family.      
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Figure S16. The spin multiplicity distribution of 20% of the design space complexes with the 
lowest curvatures for GGA (top left panel) meta-GGA (top right panel), RS-hybrid (bottom left 
panel) and double-hybrid (bottom right panel) families ordered by increasing count from left to 
right for each functional family. The counts correspond to each occurrence of a complex in the 
20% of the design space with the lowest curvatures. Error bars correspond to the standard deviation 
between the different functionals in the same family. 
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Figure S17. The oxidation state multiplicity distribution of the 20% of the design space complexes 
with the lowest curvatures for GGA (top left panel) meta-GGA (top right panel), RS-hybrid 
(bottom left panel) and double-hybrid (bottom right panel). The counts correspond to each 
occurrence of a complex in the 20% of the design space with the lowest curvatures. Error bars 
correspond to the standard deviation between the different functionals. 
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Figure S18. The absolute value of the difference between the ANN model prediction and the 
calculated curvature for a series of functionals that were predicted to produce curvatures between 
0 and 0.4 eV for two representative complexes: (left panel) Fe(III)(furan)4(ammonia)2 in the HS 
state and (right panel) Co(II)(carbonyl)4(furan)2 in the LS state. 
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