6

Supporting Information

Quest on Singlet Fission of Organic Sulfur-Containing Systems in the Higher Lying Singlet Excited State: An Application Prospect of Anti-Kasha Rule

Chun-Hao Huang¹, Chi-Chi Wu², Elise Y. Li¹* and Pi-Tai Chou²*

¹Department of Chemistry, National Taiwan Normal University, Taipei, 11677,

Taiwan

²Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan

Figure S1. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of DMIT, DMIT-7OH and DMIT-7OMe.

Figure S2. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of CPO, CPO-OH and CPO-OMe.

Figure S3. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of DMIT-7OH and its derivatives with nitrogen substituted at *meta-*, *ortho-* or *para-* position.

Figure S4. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of the DMIT series.

Figure S5. The detailed energy diagram of DMIT-7OMe at the optimized S_0 , S_2 and T_1 geometries.

Figure S6. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of the CPO series.

Figure S7. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of the CPS series.

Figure S8. Top view and side view of different frontier molecular orbitals in CPON-OMe mapped together with total density isovalue = 0.02.

Figure S9. The molecular orbitals and their relative energy alignment at the optimized S_0 geometry of the CPON and *i*-CPON series.

Figure S10. The detailed energy diagram at the optimized S_0 , S_2 and T_1 geometries of *i*-CPON.

Figure S11. The energy diagram at the optimized S_0 geometries of DMIT-7OH with b3lyp and ω B97XD

Compound	Excited	Energy	Contribution	Character	$\Delta E(S_2-S_1)$
	state	(eV)			E(eV)
DMIT	S_1	2.26	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1.63
	S_2	3.89	$\text{H-1} \rightarrow \text{L}(0.77)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.19)$		
	T_1	1.65	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	
	T_2	1.95	$\text{H-1} \rightarrow \text{L}(0.94)$	$\pi\pi^*$	
DMIT-70H	\mathbf{S}_1	2.65	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	0.7
	\mathbf{S}_2	3.34	$\text{H-1} \rightarrow \text{L}(0.93)$	$\pi\pi^*$	
	T_1	1.95	$\mathrm{H} \rightarrow \mathrm{L}\left(0.97\right)$	$n\pi^*$	
	T_2	2.18	$\text{H-1} \rightarrow \text{L}(0.64)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.31)$		
DMIT-70Me	\mathbf{S}_1	2.14	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.4
	S_2	3.54	$\text{H-1} \rightarrow \text{L}(0.82)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.16)$		
	T_1	1.49	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	
	T_2	2.02	$\text{H-1} \rightarrow \text{L}(0.86)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.1)$		

Table S1. Calculated excitation data at the optimized S_0 geometry of the **DMIT** derivatives.

DMIT-pN	\mathbf{S}_1	2.19	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.54
	S_2	3.73	$\text{H-2} \rightarrow \text{L}(0.98)$	σπ*	
	S_3	3.90	$\text{H-1} \rightarrow \text{L}(0.95)$	$\pi\pi^*$	
DMIT-mN	\mathbf{S}_1	2.48	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	0.73
-70H	S_2	3.21	$\text{H-1} \rightarrow \text{L}(0.97)$	$\pi\pi^*$	
	S_3	3.55	$\text{H-3} \rightarrow \text{L}(0.97)$	σπ*	
DMIT-0N	\mathbf{S}_1	2.63	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1
-70H	S_2	3.63	$\text{H-1} \rightarrow \text{L}(0.91)$	$\pi\pi^*$	
	S_3	3.9	$\text{H-3} \rightarrow \text{L}(0.98)$	σπ*	
DMIT-pN	\mathbf{S}_1	2.60	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.23
-70H	S_2	3.83	$\text{H-3} \rightarrow \text{L}(0.98)$	σπ*	
	S_3	3.86	$\text{H-2} \rightarrow \text{L}(0.75)$	$\pi\pi^*$	
			$\text{H-1} \rightarrow \text{L}(0.22)$		
DMIT-pN	\mathbf{S}_1	2.12	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.85
-7OMe	S_2	3.97	$\text{H-1} \rightarrow \text{L}(0.79)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.19)$		
	S_3	3.99	$\text{H-3} \rightarrow \text{L}(0.97)$	σπ*	

Compound	Excited	Energy	Contribution	Character	$\Delta E(S_2-S_1)$
	state	(eV)			E(eV)
СРО	S_1	2.53	$H \rightarrow L(1)$	nπ*	1.53
	S_2	4.06	$\text{H-1} \rightarrow \text{L}(0.93)$	ππ*	
	T_1	1.96	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	
	T_2	2.16	$\text{H-1} \rightarrow \text{L}(0.91)$	ππ*	
СРО-ОН	S_1	2.7	$H \rightarrow L(1)$	nπ*	0.77
	S_2	3.47	$\text{H-1} \rightarrow \text{L}(0.9)$	$\pi\pi^*$	
	T_1	2.04	$\mathrm{H} \rightarrow \mathrm{L}\left(0.96\right)$	$n\pi^*$	
	T_2	2.15	$\text{H-1} \rightarrow \text{L}(0.59)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.34)$		
CPO-OMe	S_1	2.5	$H \rightarrow L(1)$	$n\pi^*$	1.16
	S_2	3.66	$\text{H-1} \rightarrow \text{L}(0.84)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.15)$		
	T_1	1.92	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	
	T_2	2.17	$\text{H-1} \rightarrow \text{L}(0.64)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.36)$		

Table S2. Calculated excitation data at the optimized S_0 geometry of the **CPO** series.

CPON	\mathbf{S}_1	2.5	$H \rightarrow L(1)$	$n\pi^*$	1.79
	S_2	4.29	$\mathrm{H}\rightarrow\mathrm{L+1}\left(1\right)$	nπ*	
	S_3	4.36	$\text{H-1} \rightarrow \text{L}(0.96)$	$\pi\pi^*$	
	S_6	5.57	$\text{H-3} \rightarrow \text{L}(0.99)$	σπ*	
CPON	S_1	2.68	$\mathrm{H} \rightarrow \mathrm{L}\left(1\right)$	nπ*	1.67
-OH	S_2	4.35	$\text{H-1} \rightarrow \text{L}(0.88)$	$\pi\pi^*$	
	S_6	5.45	$\text{H-3} \rightarrow \text{L}(0.99)$	σπ*	
CPON	S_1	2.50	$H \rightarrow L(1)$	nπ*	1.93
-OMe	S_2	4.42	$\text{H-1} \rightarrow \text{L}(0.96)$	$\pi\pi^*$	
	S_7	5.58	$\text{H-3} \rightarrow \text{L}(0.99)$	σπ*	

Compound	Excited	Energy	Contribution	Character	$\Delta E(S_2-S_1)$
	state	(eV)			E(eV)
CPS	\mathbf{S}_1	2.43	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.54
	S_2	3.97	$\text{H-1} \rightarrow \text{L}(0.83)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.14)$		
СРЅ-ОН	\mathbf{S}_1	2.69	$\text{H-1} \rightarrow \text{L}(0.99)$	$n\pi^*$	0.48
	S_2	3.16	$\mathrm{H} \rightarrow \mathrm{L}\left(0.98\right)$	ππ*	
CPS-OMe	\mathbf{S}_1	2.35	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.07
	S_2	3.42	$\text{H-1} \rightarrow \text{L}(0.98)$	$\pi\pi^*$	

Table S3. Calculated excitation data at the optimized S_0 geometry of the **CPS** series.

CPSN	\mathbf{S}_1	2.4	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1.61
	\mathbf{S}_2	4	$\mathrm{H} \rightarrow \mathrm{L+1} \ (0.99)$	nπ*	
	S_3	4.18	$\text{H-1} \rightarrow \text{L}(0.95)$	$\pi\pi^*$	
	S_5	4.9	$\text{H-3} \rightarrow \text{L}(0.99)$	σπ*	
CPSN-OH	\mathbf{S}_1	2.68	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1.01
	S_2	3.69	$\text{H-1} \rightarrow \text{L}(0.82)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.17)$		
	S_5	4.82	$\text{H-3} \rightarrow \text{L}(0.97)$	σπ*	
CPSN-OMe	\mathbf{S}_1	2.35	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1.46
	S_2	3.81	$\text{H-1} \rightarrow \text{L}(0.82)$	$\pi\pi^*$	
			$\text{H-2} \rightarrow \text{L}(0.17)$		
	\mathbf{S}_7	5.07	$\text{H-3} \rightarrow \text{L}(0.86)$	σπ*	

Compound	Excited	Energy	Contribution	Character	$\Delta E(S_2-S_1)$
	state	(eV)			E(eV)
CPON	S_1	2.5	$H \rightarrow L(1)$	nπ*	1.79
	S_2	4.29	$\mathrm{H}\rightarrow\mathrm{L+1}\left(1\right)$	$n\pi^*$	
	S_3	4.36	$\text{H-1} \rightarrow \text{L}(0.96)$	$\pi\pi^*$	
CPON-	S_1	2.5	$\mathrm{H} \rightarrow \mathrm{L}(1)$	$n\pi^*$	1.93
OMe	S_2	4.42	$\text{H-1} \rightarrow \text{L}(0.96)$	$\pi\pi^*$	
	S_3	4.57	$\text{H-2} \rightarrow \text{L}(0.99)$	$\pi\pi^*$	
CPON-CN	S_1	2.34	$\mathrm{H} \rightarrow \mathrm{L}\left(0.96\right)$	$n\pi^*$	1.17
	S_2	3.51	$\mathrm{H} \rightarrow \mathrm{L+1} \ (0.97)$	$n\pi^*$	
	S_3	4.22	$\text{H-1} \rightarrow \text{L}(0.9)$	$\pi\pi^*$	

Table S4. Calculated excitation data at the optimized S_0 geometry of the **CPON** and *i*-**CPON** series.

<i>i</i> -CPON	\mathbf{S}_1	2.26	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	$n\pi^*$	1.94
	S_2	4.2	$\text{H-1} \rightarrow \text{L}(0.98)$	$\pi\pi^*$	
	S_3	4.59	$\mathrm{H} \rightarrow \mathrm{L+1} \ (0.98)$	nπ*	
<i>i</i> -CPON	\mathbf{S}_1	2.45	$\mathrm{H} \rightarrow \mathrm{L}\left(0.99\right)$	nπ*	1.59
-OMe	S_2	4.04	$\text{H-1} \rightarrow \text{L}(0.97)$	$\pi\pi^*$	
	S_3	4.64	$\mathrm{H} \rightarrow \mathrm{L+1} \ (0.99)$	nπ*	
<i>i</i> -CPON	\mathbf{S}_1	1.93	$\mathrm{H} \rightarrow \mathrm{L}\left(0.98\right)$	nπ*	1.99
-CN	S_2	3.92	$\text{H-1} \rightarrow \text{L}(0.99)$	$\pi\pi^*$	
	S_3	4.02	$\mathrm{H} \rightarrow \mathrm{L+1} \ (0.97)$	$n\pi^*$	

Table S5. Theoretical data of the designed systems in this study at the optimized S_0 , S_2 and T_1 geometries and the experimental excitation data of the cofacial perylene dimer.

^{<i>a</i>} calculated from $E(S_2)@S_0(eV) - 2E(T_1)@T_1(eV)$	

Compound	DMIT- <i>p</i> N	CPON	<i>i</i> -CPON	cofacial perylene
	-70Me	-OMe		dimer ¹
$E(S_2)@S_0(eV)$	3.97	4.42	4.2	4.96
$E(T_1)@T_1(eV)$	1.49	1.91	1.63	1.51
Heat loss ^{<i>a</i>}	0.99	0.6	0.94	1.94

<s hso t></s hso t>	T ₃ $(\Delta E_{ST})^a$	$T_4(\Delta E_{ST})$	$T_5(\Delta E_{ST})$	$T_6(\Delta E_{ST})$
DMIT	0.67 (0.21)	0.92 (-0.22)	0.62 (-0.96)	13.34 (-1.00)
DMIT-70Me	2.28 (0.43)	1.42 (-0.49)	2.84 (-0.93)	11.10 (-1.35)
DMIT-pN	1.91 (0.14)	18.21 (-0.88)	1.16 (-1.24)	10.44 (-1.28)
DMIT-pN-70Me	1.51 (1.79)	9.34 (1.27)	12.02 (0.67)	1.08 (0.41)
СРО	23.32(-0.23)	13.30(-1.01)	24.24(-1.69)	4.59(-2.41)
CPO-OMe	2.11 (0.30)	2.08 (-0.45)	13.3 (0.94)	7.76 (-1.35)
CPON-OMe	0.54 (0.30)	0.30 (-0.32)	8.50 (-1.64)	17.70 (-1.68)
<i>i</i> -CPON	0.26 (-0.26)	117.62 (-0.83)	0.12 (-1.06)	87.61 (-1.23)

Table S6. Spin-orbit couplings calculated as root mean squares (cm⁻¹) at S_2 -optimized structure of DMIT-derivatives

^a ΔE_{ST} =(E_{S2}-E_{Tn}) at S₂-optimized structure

Structure	Excited state	Eporgy (aV)	Contribution	Character	$\Delta E(S_2-S_1)$
Siluciule	Exclice state	Ellergy (ev)		Character	E(eV)
	S_1	2.82	$\text{H-1} \rightarrow \text{L} (0.94)$	nπ*	
	S_2	3.76	$\mathrm{H} \rightarrow \mathrm{L} \; (0.96)$	ππ*	
	T_1	2.47	$\text{H-2} \rightarrow \text{L} (0.39)$	ππ*	
@S ₀ -opt			H-1 \rightarrow L (0.09)	nπ*	0.94
			$\mathrm{H} \rightarrow \mathrm{L} \; (0.46)$	$\pi\pi^*$	
	T_2	2.48	$\text{H-2} \rightarrow \text{L} (0.07)$	$\pi\pi^*$	
			$\text{H-1} \rightarrow \text{L} (0.85)$	nπ*	
	S_1	2.58	$\mathrm{H} \rightarrow \mathrm{L} \; (0.95)$	nπ*	
	S_2	3.75	$\text{H-1} \rightarrow \text{L} (0.95)$	ππ*	
	T_1	2.22	$\text{H-2} \rightarrow \text{L} (0.08)$	$\pi\pi^*$	
			$\text{H-1} \rightarrow \text{L} (0.17)$	$\pi\pi^*$	1 17
@S1-0pt			$\mathrm{H} \rightarrow \mathrm{L} \; (0.69)$	nπ*	1.1/
	T_2	2.28	$\text{H-2} \rightarrow \text{L} (0.30)$	$\pi\pi^*$	
			$\text{H-1} \rightarrow \text{L} (0.39)$	$\pi\pi^*$	
			$\mathrm{H} \rightarrow \mathrm{L} \ (0.25)$	nπ*	
	S_1	2.85	$\text{H-1} \rightarrow \text{L} (0.96)$	nπ*	
	S_2	3.38	$\mathrm{H} \rightarrow \mathrm{L} \; (0.98)$	ππ*	
@S2-opt	T_1	2.3	$\text{H-2} \rightarrow \text{L} (0.40)$	$\pi\pi^*$	0.53
			$\mathrm{H} \rightarrow \mathrm{L} \; (0.56)$	$\pi\pi^*$	
	T ₂	2.54	$\text{H-1} \rightarrow \text{L} (0.95)$	nπ*	

Table S7. Calculated excitation data with ω B97XD at the optimized geometries of the DMIT-7OH series.

References

(1) W. Ni, G. G. Gurzadyan, J. Zhao, Y. Che, X. Li, and L. Sun, J. Phys. Chem. Lett. 2019, 10, 2428-2433.