Small chromium-doped silicon clusters CrSi_n: Structures, IR spectra, charge effect, magnetism and chirality

Bao-Ngan Nguyen-Ha,^{a,b} Ngoc Thach Pham,^c Pieterjan Claes,^d Peter Lievens,^d

André Fielicke,^e Vu Thi Ngan,^c Minh Tho Nguyen^{f,*} and Ewald Janssens^{d,*}

^a Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

Email: ngan.nguyenhabao@vlu.edu.vn

^b Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

^c Laboratory of Computational Chemistry and Modeling (LCCM), Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, Vietnam

^d Quantum Solid State Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. Email: ewald.janssens@kuleuven.be

^e Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, 14195 Berlin, Germany ^f Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam. Email: tho.nm@icst.org.vn

Content:

- Mass spectrum of produced chromium doped silicon clusters (Figure S1).
- Relative energy comparison between B3P86 6-311+G(d) and B3P86/aug-cc-pVTZ theory levels of cationic, neutral and anionic $CrSi_n^{+/0/-}$ clusters (n = 3-10) (Table S1).
- Relative energy comparison between B3P86/6-311+G(d) and B3LYP/6-311+G(d) theory levels of anionic CrSin⁻ cluster (n = 3-10) (Table S2).

- Average binding energy, fragmentation energies and natural population analysis for the ground-states of the cationic, neutral, anionic $CrSi_n^{+/0-}$ clusters (Table S3).
- The adiabatic ionization energies (IE_a) and the adiabatic electron affinities (AE_a) of neutral isomers having similar shape to the ground-state cationic and anionic structures (Table S4).
- Stable strucutres of cationic, neutral and anionic chromium doped silicon clusters $CrSi_n^{+/0}$ with n = 3-10 (Figures S2 to S14).
- IR spectra comparison of CrSi₈⁺ and CrSi₉⁺ clusters between calculation and experiment (Figure S15 and Figure S16).
- Calculated-IR and UV-Vis spectra of ground-state enantiomers CrSin^{+/0/-} (n = 9 for cation, n = 7 for neutral and anion) (Figure S17).
- Calculated-ECD spectra of higher-energy enantiomers of cationic, neutral and anionic $CrSi_n^{+/0/-}$ clusters with n = 3-10 (Figure S18).

Figure S1. Mass spectrum of $CrSi_n^+$ clusters with the source at a temperature of 80 K and a 5 % argon mixture in the helium carrier gas. Argon complexes are found for $CrSi_n^+$. Ar (n = 6-10). For these sizes, no $CrSi_n^+$ clusters are observed in the mass spectrum. The exohedrally doped clusters react completely with the argon atoms. Starting from $CrSi_{11}Cr^+$, unreacted doped clusters appear in the mass spectrum. The highest peaks (on the grid lines) in the mass spectrum correspond to pure Si_n^+ clusters (note that Si and Cr have multiple isotopes, of which ²⁸Si and ⁵²Cr have the highest abundances).

Isomer	Electronic state	6-311+G(d)	aug-cc-pVTZ	Isomer	Electronic state	6-311+G(d)	aug-cc-pVTZ
C3-iso1	${}^{4}\text{B}_{2}$	0.00	0.00	A9-iso1	⁶ A	0.00	0.00
C3-iso2	${}^{4}A_{1}$	0.33	0.33	A9-iso2	${}^{2}A_{1}$	0.05	0.18
C3-iso3	⁴ A'	0.36	0.38	N3-iso1	⁵ A ₁	0.00	0.00
C4-iso1	⁶ A'	0.00	0.00	N3-iso1	⁷ A1	0.39	0.15
C4-iso2	⁶ A ₁	0.22	0.24	N3-iso2	⁵ A'	0.50	0.37
C5-iso1	⁶ A'	0.00	0.00	N4-iso1	${}^{5}\mathrm{B}_{2}$	0.00	0.00
C5-iso2	⁴ A''	0.36	0.39	N4-iso1	⁷ A	0.31	0.32
C6-iso1	⁶ A'	0.00	0.01	N4-iso2	⁵ A''	0.29	0.25
C6-iso2	⁶ A'	0.03	0.00	N4-iso3	⁷ A	0.31	0.30
C7-iso1	${}^{6}A_{1}$	0.00	0.00	N5-iso1	${}^{5}B_{1}$	0.00	0.00
C7-iso2	⁶ A	0.16	0.15	N5-iso2	⁵ A'	0.09	0.08
C7-iso3	${}^{6}A_{1}$	0.19	0.22	N7-iso1	⁵ A'	0.00	0.05
C8-iso1	⁴ A"	0.00	0.00	N7-iso2	⁵ A	0.02	0.01
C8-iso2	⁶ A'	0.06	0.04	N7-iso3	⁵ A'	0.06	0.00
C10-iso1	⁶ A	0.00	0.00	N7-iso4	⁵ A'	0.07	0.06
C10-iso2	⁶ A'	0.04	0.03	N8-iso1	⁵ A''	0.00	0.00
A6-iso1	$^{4}A_{1}$	0.00	0.00	N8-iso2	⁵ A	0.05	0.00
A6-iso2	⁶ A	0.32	0.33	N8-iso3	³ A'	0.06	0.01
A7-iso1	⁶ A'	0.00	0.04	N8-iso4	⁵ A''	0.16	0.18
A7-iso1	⁴ A'	0.01	0.04	N9-iso1	⁵ A	0.00	0.00
A7-iso2	⁶ A	0.05	0.00	N9-iso2	⁵ A	0.07	0.12
A8-iso1	⁶ A1	0.00	0.00	N10-iso1	⁵ A'	0.00	0.00
A8-iso2	⁶ A'	0.18	0.23	N10-iso2	${}^{7}A_{1}$	0.01	0.02
A8-iso3	⁶ A'	0.22	0.16	N10-iso3	⁵ A'	0.02	0.01

Table S1. Relative energy comparison between B3P86/6-311+G(*d*) and B3P86/aug-cc-pVTZ theory levels of cationic, neutral and anionic $CrSi_n^{+/0/-}$ clusters (n = 3-10)

Table S2. Relative energy comparison between B3P86/6-311+G(d) and B3LYP/6-311+G(d)

Ľ		amonie cibin ei	$u_{3}(c_{1}(1) = 0^{-1}(0))$			
	Isomer	B3P86/6-311+G(<i>d</i>)	B3LYP/6-311+G(<i>d</i>)	Isomer	B3P86/6-311+G(<i>d</i>)	B3LYP/6-311+G(<i>d</i>)
	A6-iso1	0.00	0.00	A8-iso1	0.00	0.00
	A6-iso2	0.32	0.46	A8-iso2	0.18	0.02
	A7-iso1 (⁶ A')	0.00	0.00	A8-iso3	0.22	0.13
	A7-iso1 (⁴ A')	0.01	0.03	A9-iso1	0.00	0.00
	A7-iso2-L/R	0.05	0.10	A9-iso2	0.05	0.17

theory levels of anionic $CrSi_n$ cluster (n = 6-10)

Table S3. Average binding energy, fragmentation energies and natural population analysis forthe ground-states of the cationic, neutral, anionic $CrSi_n^{+/0-}$ clusters.

								Flootnon	Flootnon		Tatal	Total
							Atomic	Electron	Electron	Spin	Total	Wiberg
1	lsomer	State	$D_{C/N}(Cr^+)$	D _{N/A} (Cr)	D _{C/N/A} (Si)	Eb-C/N/A	charge	population	population	density	Wiberg	bond of
							on Cr	on Cr's 3d	on Cr's 4s	of Cr	bond	cleaved
								shell	shell		of Cr	Si
cation	C3-iso1	${}^{4}B_{2}$	4.77		5.02	2.40	0.83	4.86	0.30	4.54	1.36	2.32
	C4-iso1	⁶ A'	2.10		5.70	2.74	0.84	4.92	0.23	4.82	0.66	2.23
	C5-iso1	⁶ A'	2.58		5.98	2.95	0.77	4.90	0.29	4.62	1.04	2.79
	C6-iso1	⁶ A'	2.21		6.42	3.12	0.86	4.87	0.25	4.77	0.79	2.47
	C6-iso2	⁶ A'	2.19		6.55	3.11	0.82	4.94	0.21	4.73	0.74	2.41
	C7-iso1	${}^{6}A_{1}$	2.32		6.20	3.27	0.83	4.96	0.20	4.87	0.55	2.83
	C7-iso2	⁶ A	2.20		6.01	3.25	0.82	4.96	0.20	4.74	0.72	2.72
	C7-iso3	$^{6}A_{1}$	2.13		6.08	3.25	0.82	4.92	0.26	5.01	0.44	2.76
	C8-iso1	⁴ A''	5.20		5.72	3.23	0.78	4.97	0.22	4.34	1.45	2.48
	C8-iso2	⁶ A'	2.95		5.26	3.22	0.72	4.94	0.28	4.69	0.94	2.82
	C9-iso1-L/R	^{6}A	2.42		6.33	3.33	0.75	5.03	0.18	4.54	0.91	2.76
	C10-iso1	⁶ A	2.52		7.07	3.42	0.82	4.96	0.20	4.71	0.74	2.98
	C10-iso2	⁶ A'	2.48		6.94	3.42	0.76	4.98	0.23	4.66	0.87	3.39
neutral	N3-iso1	${}^{5}A_{1}$	6.78	3.69	4.96	2.59	0.66	4.94	0.38	4.67	1.22	2.74
	N3-iso1	$^{7}A_{1}$	6.63	2.02	5.52	2.54	0.60	5.00	0.38	4.98	0.69	3.02
	N4-iso1	${}^{5}B_{2}$	6.76	2.87	5.62	2.89	0.61	4.98	0.33	4.56	1.32	2.65
	N5-iso1	${}^{5}B_{1}$	7.27	4.22	6.07	3.12	0.58	4.99	0.36	4.47	1.50	2.85
	N5-iso2	⁵ A'	6.77	4.19	6.74	3.10	0.63	4.99	0.35	4.73	1.07	2.85
	N6-iso1	${}^{5}B_{2}$	6.77	3.25	5.92	3.25	0.64	5.05	0.25	4.44	1.34	2.79
	N7-iso1	⁵ A'	7.44	4.14	5.67	3.26	0.44	5.04	0.40	4.32	1.76	2.63
	N7-iso2-L/R	⁵ A	6.81	3.65	5.63	3.25	0.61	4.98	0.35	4.48	1.43	2.82
	N7-iso3	⁵ A'	6.12	2.41	5.41	3.25	0.67	5.07	0.24	4.62	1.01	2.82
	N8-iso1	⁵ A''	6.40	3.85	5.67	3.30	0.58	5.14	0.22	4.31	1.38	2.73
	N8-iso2	⁵ A''	7.00	4.13	6.38	3.29	0.61	5.03	0.29	4.44	1.38	3.52
	N8-iso3	³ A'	9.74	7.10	5.89	3.25	0.27	5.23	0.35	3.90	2.45	2.65
	N9-iso1	⁵ A	6.82	4.15	6.40	3.36	0.56	5.10	0.23	4.18	1.60	3.02
	N10-iso1	⁵ A'	6.14	2.80	6.09	3.43	0.67	5.04	0.27	4.59	1.02	2.68
	N10-iso2	$^{7}A_{1}$	6.15	1.62	6.65	3.43	0.57	4.96	0.45	5.04	0.77	2.71
	N10-iso3	⁵ A'	6.13	2.89	6.30	3.43	0.60	5.09	0.27	4.53	1.16	3.07
anion	A3-iso1	⁶ A ₁		3.06	5.69	2.80	0.30	4.99	0.66	5.08	1.04	2.96
	A4-iso1	${}^{4}A_{2}$		5.34	6.15	3.00	0.42	5.09	0.40	4.38	1.81	2.78
	A5-iso1	⁶ A'		3.37	7.07	3.29	0.46	5.05	0.44	4.87	1.03	2.84
	A6-iso1	${}^{4}A_{1}$		7.42	7.29	3.37	0.24	5.04	0.57	4.15	2.41	3.07
	A6-iso2	⁶ A		2.91	5.67	3.33	0.50	5.16	0.27	4.65	1.00	2.85
	A7-iso1	⁶ A'		4.40	6.39	3.38	0.28	5.14	0.41	4.51	1.48	3.06
	A7-iso1	⁴ A'		6.96	6.20	3.38	0.03	5.28	0.47	3.89	2.50	3.06
	A7-iso2-L/R	⁶ A		3.09	5.71	3.37	0.45	5.07	0.43	4.75	1.14	2.95
	A8-iso1	⁶ A ₁		3.24	6.33	3.45	0.52	5.21	0.23	4.54	1.03	2.98
	A8-iso2	⁶ A'		2.92	6.68	3.43	0.47	4.97	0.55	5.03	0.94	3.04
	A8-iso3	⁶ A'		3.80	6.66	3.42	0.52	5.09	0.33	4.62	1.12	3.60
	A9-iso1	⁶ A		3.75	6.19	3.50	0.43	5.23	0.23	4.43	1.21	3.06
	A9-iso2	$^{2}A_{1}$		10.02	6.60	3.49	-1.73	6.90	0.47	0.96	4.26	3.13
	A10-iso1	^{2}A		10.73	6.33	3.55	-2.64	7.77	0.45	0.81	4.22	2.91

Structure	$IE_a (eV)$	$AE_{a} (eV)$
C5-iso1	7.51	
A5-iso1		3.10
C6-iso1	7.03	
C6-iso2	7.07	
C7-iso1	6.30	
C7-iso2	6.50	
C7-iso3	6.15	
N7-iso2	7.09	2.90
N7-iso3	6.50	2.60
C8-iso2	6.65	
N8-iso2	7.34	3.11
N8-iso3	7.63	3.25
A8-iso2		3.57
C9-iso1	6.67	
N9-iso1	7.87	3.31
A9-iso2		3.52
N10-iso2	6.96	2.95
N10-iso3	6.63	2.98
A10-iso1		3.57

Table S4. The adiabatic ionization energies (IE_a) and the adiabatic electron affinities (AE_a) of neutral isomers having similar shape to the ground-state cationic and anionic structures.

Figure S2. Stable isomers of the cationic $CrSi_n^+$ cluster (n = 3-5)

N3-iso1 [0.00; C_{2ν}; ⁵A₁] [0.15; C_{2ν}; ⁷A₁]

N4-iso1 [0.00; C_{2ν}; ⁵B₂] [0.31; C₁; ⁷A] [0.59; C_{2ν}; ³A₂]

N4-iso6 [0.50; C₁; ⁵A]

N5-iso1 [0.00; C_{2v}; ⁵B₁]

N5-iso5 [0.85; C₁; ⁵A]

N3-iso2 [0.50; C_s; ⁵A'] [0.89; C_s; ⁷A'] [1.18; C_s; ³A']

N4-iso2 [0.29; C_s; ⁵A'']

N4-iso5

[0.55; C_s; ⁵A'']

[0.74; C_s; ³A''] [0.77; C_s; ⁷A'']

N5-iso2

[0.09; C_s; ⁵A']

[1.43; C_s; ³A']

N5-iso6

[0.94; C₁; ³A]

N4-iso3 [0.31; C₁; ⁷A]

N4-iso7 [0.77; C_s; ³A'']

N5-iso3 [0.61; C_s; ³A']

N5-iso7 [1.10; C_{4v}; ³B₂] [1.38; C_{4v}; ¹A₁]

N5-iso8 [1.28; C_s; ⁵A''] [1.32; C_s; ⁷A'']

Figure S3. Stable isomers of the neutral $CrSi_n$ cluster (n = 3-5)

N3-iso3 [0.47; C₁; ⁵A] [0.63; C₁; ⁷A] [1.19; C_{3ν;} ¹A₁]

N4-iso4 [0.38; C_s; ⁷A'] [0.42; C_s; ⁵A'']

N4-iso8 [1.16; C₁; ⁵A]

N5-iso4 [0.65; C₁; ⁷A]

Figure S4. Stable isomers of the cationic $CrSi_6^+$ cluster.

Figure S5. Stable isomers of cationic CrSi₇⁺ cluster.

C8-iso1 [0.00; C_s, ⁴A''] [0.43, C₁, ⁶A/ 86*i* cm⁻¹]

C8-iso2 [0.06; C_s; ⁶A'] [0.34; C_s; ⁴A']

C8-iso3 [0.18; C_s; ⁴A'] [0.53; C_s; ⁶A']

C8-iso4-L [0.19; C₁; ⁴A] [0.39; C₁; ⁶A]

C8-iso7

[0.25; C_s; ⁴A'']

[0.53; C1; ⁶A]

C8-iso4-R [0.19; C₁; ⁴A] [0.39; C₁; ⁶A]

C8-iso5-L [0.23; C₁; ⁶A] [0.31; C_s; ⁴A'']

C8-iso9 [0.28; C1; ⁴A] [0.46; C1; ⁶A]

C8-iso13 [0.37; C₁; ⁴A] [0.60; C₁; ⁶A]

C8-iso5-R [0.23; C₁; ⁶A] [0.31; C_s; ⁴A'']

C8-iso10-L [0.29; C₁; ⁴A] [0.29; C₁; ⁶A]

C8-iso14 [0.52; C₁; ⁴A]

C8-iso6 [0.24; C₁; ⁶A] [0.49; C₁; ⁴A]

C8-iso10-R [0.29; C₁; ⁴A] [0.29; C₁; ⁶A]

C8-iso15 [0.54; C_s; ⁴A''] [0.73; C_s; ⁶A'']

C8-iso11

[0.32; C₁; ⁴A]

C8-iso16 [0.56; C₁; ⁴A] [0.61; C₁; ⁶A]

C8-iso8 [0.26; C_s; ⁴A''] [0.34; C₁; ⁶A]

C8-iso12 [0.33; C₁; ⁴A]

C8-iso17 [0.67; C_s; ⁴A''] [0.75; C_s; ⁶A'']

Figure S6. Stable isomers of cationic $CrSi_8^+$ cluster.

C9-iso1-L [0.00; C₁; ⁶A] [0.77; C₁; ⁴A]

C9-iso5-L [0.37; C₁; ⁶A] [0.59; C₁; ⁴A]

C9-iso1-R [0.00; C1; ⁶A] [0.77; C₁; ⁴A]

C9-iso5-R [0.37; C₁; ⁶A] [0.59; C1; ⁴A]

C9-iso2 [0.11; C₁; ⁶A] [0.69; C₁; ⁴A]

C9-iso6 [0.52; C₁; ⁶A] [0.73; C₁; ⁴A]

C9-iso3 [0.12; C1; ⁶A] [0.91; C₁; ⁴A]

C9-iso7 [0.55; C1; ⁶A]

C9-iso4 [0.29; C1; ⁶A]

C9-iso8 [0.65; C1; ⁶A] [0.72; C1; ⁴A]

Figure S7. Stable isomers of cationic CrSi₉⁺ cluster.

Figure S8. Stable isomers of cationic $CrSi_{10}^+$ cluster.

N6-iso1 [0.00; C_{2v}; ⁵B₂] [0.44; C_{2v}; ⁷B₂]

N6-iso5 [0.42; C_s; ⁵A'] [0.91; C₁; ³A]

N6-iso2 [0.36; C_s; ⁵A'] [0.48; C_s; ⁷A']

N6-iso6 [0.43; C₁; ⁵A] [1.62; C₁; ³A]

N6-iso3 [0.36; C_s; ⁵A''] [0.50; C₁; ⁷A]

N6-iso7 [0.64; C₁; ⁵A]

N6-iso4 [0.41; C_{2ν}; ⁵B₂] [0.84; C₁; ⁷A]

N6-iso8 [0.89; C₁; ³A] [1.09; C1; ⁵A]

Figure S9. Stable isomers of neutral CrSi₆ cluster

Figure S10. Stable isomers of neutral CrSi7 cluster

N8-iso1 [0.00; Cs; ⁵A''] [0.36; Cs; ⁷A'']

N8-iso5 [0.16; C₁; ⁵A] [0.40; C₁; ³A]

N8-iso9 [0.25; C_s; ⁵A'']

N8-iso2 [0.05; C_s; ⁵A'']

N8-iso6 [0.21; C₁; ⁵A] [0.25; C₁; ³A]

N8-iso10 [0.26; C_s; ⁵A']

N8-iso3 [0.06; C_s; ³A'] [0.47; C_s; ⁵A']

N8-iso7 [0.23; C_s; ³A'] [0.46; C₁; ⁵A]

N8-iso11 [0.32; C₁; ⁵A] [0.59; C₁; ⁷A]

N8-iso4 [0.16; C_s; ⁵A''] [0.65; C_s; ⁷A'']

N8-iso8 [0.24; C₁; ³A] [0.53; C₁; ⁵A]

N8-iso12 [0.33; C₁; ⁵A] [0.34; C₁; ⁷A]

Figure S11. Stable isomers of neutral CrSi₈ cluster

N9-iso1 [0.00; C₁; ⁵A] [0.44; C₁; ⁷A]

N9-iso4 [0.25; C_s; ⁵A''] [0.51; C_s; ⁷A']

N9-iso6-R [0.38; C₁; ⁷A]

N9-iso2-L [0.07; C₁; ⁵A]

N9-iso5-L [0.26; C₁; ⁵A]

N9-iso7 [0.39; C_{3v}; ¹A₁] [0.85; C₁; ³A]

N9-iso2-R [0.07; C₁; ⁵A]

N9-iso5-R [0.26; C₁; ⁵A]

N9-iso8 [0.40; C_s; ⁵A'] [0.54; C_s; ⁷A']

N9-iso3 [0.15; C₁; ⁵A] [0.39; C₁; ⁷A]

N9-iso6-L [0.38; C₁; ⁷A]

N9-iso9 [0.42; C_s; ³A''] [0.71; C_s; ⁵A'']

Figure S12. Stable isomers of neutral CrSi₉ cluster

N10-iso1 [0.00; C_s; ⁵A'] [0.15; C_s; ⁷A']

N10-iso5 [0.14; C_{2v}; ¹A₁]

N10-iso9 [0.28; C_s; ⁵A'] [0.49; C_s; ⁷A']

N10-iso2 [0.01; C_{3v}; ⁷A₁] [0.23; C_{3v}; ⁵A₁]

N10-iso6 [0.16; C_{2v}; ¹A₁]

N10-iso10 [0.29; C_s; ⁵A'] [0.48; C_s; ⁷A']

Figure S13. Stable isomers of neutral CrSi₁₀ cluster

N10-iso3 [0.02; C_s; ⁵A'] [0.20; C_s; ⁷A']

N10-iso7 [0.21; Cs; ⁵A'] [0.37. Cs; ⁷A']

N10-iso11 [0.31; C_s; ⁵A''] [0.64; C_s; ⁷A'']

N10-iso4 [0.11; C₁; ⁵A] [0.13; C₁; ⁷A]

N10-iso8 [0.25; C_s; ⁵A'] [0.38; C_s; ⁷A']

A3-iso1 [0.00; C_{2v}; ⁶A₁]

A6-iso2 [0.32; C₁; ⁶A]

A8-iso1 [0.00; C_{2ν}; ⁶A₁]

A4-iso1 [0.00; C₁; ⁴A]

A7-iso1 [0.00; C_s; ⁶A'] [0.01; C_s; 4A']

A8-iso2 [0.18; C_s; 6A']

[0.05; C_{3v}; ²A₁]

A8-iso3

[0.22; C_s; 6A']

A5-iso1

[0.00; C_s; ⁶A']

A7-iso2-L

[0.05; C1; ⁶A]

A10-iso1 [0.00; C₁; ²A]

A6-iso1 [0.00; C_{5v}; ⁴A₁]

A7-iso2-R [0.05; C₁; ⁶A]

A9-iso1 [0.00; C₁; ⁶A]

Figure S14. Stable structures of anionic $CrSi_n$ cluster (n = 6-10).

Figure S15. IR spectra comparison of $CrSi_8^+$ clusters between calculation and experiment.

Figure S16. IR spectra comparison of CrSi₉⁺ clusters between calculation and experiment.

Figure S17. Calculated-IR and UV-Vis spectra of ground-state enantiomeric clusters $CrSi_n^{+/0/-}$ (n = 9 for cation, n = 7 for neutral and anion).

Figure S18. Calculated Electronic Circular Dichroism spectra of higher-energy enantiomeric clusters $CrSi_n^{+/0/-}$ (n = 3-10).