
1

Electronic Supplementary Information for

Rocking motion in solid proteins studied by the
15

N pro-

ton-decoupled R1 relaxometry.

Alexey Krushelnitsky,* Günter Hempel, Hannes Jurack, Tiago Ferreira

Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7,

06120, Halle (Saale), Germany

*krushelnitsky@physik.uni-halle.de

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2023

2

1 ANALYSIS OF THE R1 DECAYS

As a typical example, we show the analysis of the standard and proton-decoupled R1 decays

measured in the microcrystalline sample at T=19 ºC and spin lock field 14 kHz. Usually, we

measured the signal amplitudes after 128 logarithmically spaced spin lock pulse delays from

0.4-0.8 ms to 24-28 ms. Such a high time resolution of the measurement enables decreasing

the "dead time" of the decays caused by the initial oscillations using the adjacent averaging

(smoothing) algorithm. Fig. S1 compares the raw and smoothed decays, from which it can be

seen that the "dead time" can be decreased from ~2 ms to ~1 ms and from ~3.5 ms to ~2 ms

for the proton-decoupled and standard R1 decays, respectively.

0.001 0.01

0.8

0.9

1.0

1.1
proton-decoupled

 R1 decay

0.001 0.01

0.4

0.6

0.8

1.0

1.2

spin lock duration / s

 standard

R1 decay

Figure S1. Experimental (black circles) and smoothed (red circles) R1 decays. Smoothing was per-

formed as averaging over 15 adjacent points using Origin software. The decays were arbitrarily nor-

malised.

After smoothing, the decays were fitted using a formula consisting of sum of five compo-

nents:
2

0

2

() 0.1 exp() 0.2 exp() 0.4 exp()

0.2 exp(/) 0.1 exp(/)

A t A Rt Rt Rt

Rt Rt

 

 

         

      

 (S1)

with A0, R and  being variable fitting parameters. Parameter  plays a role of a width of the

relaxation rates distribution. The mean relaxation rate (initial slope of the decay) is deter-

mined as

 2 2

1 0.1 0.2 0.4 0.2/ 0.1/R R            (S2)

3

The coefficients 0.1, 0.2, 0.4, 0.2, and 0.1 were chosen arbitrarily. However, this practically

does not affect the final result. Another set of these coefficients (we tried e.g. 0.05, 0.15, 0.6,

0.15. 0.05) provides essentially the same mean relaxation rate.

The phenomenological formula (Eq. S1), in many cases, could not describe the whole meas-

ured decay very well since the shape of the decay can be more complicated than the one de-

scribed by Eq. S1. In this case, the fitting range of the decay was truncated down to 10-15 ms,

which was usually enough for reasonably good fitting. Fitting the smoothed decays provides

quite a small fitting error of
1R 

. The small error, however, looks unrealistic since the initial

slope is invisible because of the initial oscillations. While fitting, we extrapolate the decay to

zero time, and such extrapolation is obviously uncertain. To estimate a more realistic fitting

uncertainty, we fitted the decays at various fixed values of the parameter  that provide visu-

ally the same fitting quality of the decay. The difference between the mean relaxation rates

obtained at the minimum and maximum values of  that provide reasonably good fitting,

comprised the fitting uncertainty indicated in Fig. 11 of the main paper. This is illustrated in

Fig. S2, which shows two options for fitting the smoothed decays with two different  values.

Still, we need to admit that because of the "dead time", determination of the mean relaxation

rate may have a certain systematic error, which is nevertheless obviously relatively small.

0.001 0.01

0.9

1.0

 =6

<R1>=9.1 s-1

 =10

<R1>=10.3 s-1

 smoothed

proton-decoupled

 R1 decay

0.001 0.01

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 =2

<R1>=18.5 s-1

 =3.5

<R1>=24.0 s-1

smoothed

 standard

R1 decay

spin lock duration / s

Figure S2. Fitting the smoothed decays using Eq. S1. The colour lines are the fitting curves, the corre-

sponding  and
1R 

 values are indicated in the figure.

4

2 FITTING THE DATA FOR THE MICROCRYSTALLINE SAMPLE AS-

SUMING A DISTRIBUTION OF THE CORRELATION TIMES FOR THE

FAST COMPONENT OF THE CORRELATION FUNCTION

For fitting the data assuming a F -distribution, Eq. 8 of the main paper should be modified as:

 
   

2

2 2
() 1 (,) (1)

1 1

S
F

S

J S A P d A


   
 

 
    

   
 (S3)

where P(,F) is the distribution function, which we assume to be log-normal:

 
2

2

ln() ln()1
(,) exp

22

F

FP
 

 


 
  

  

 (S4)

In this way, we introduce one more fitting parameter, the distribution width . Then, using

Eqs. S3 and S4, we fitted the R1 data measured at 29 ºC with the fixed value S
2
=0.975, which

corresponds to the order parameter obtained at T= 9 ºC (see Tab. 2 of the main paper). We got

practically the same fitting error and the following set of the fitting parameters: A=0.67±0.1,

F=(0.23±0.12) s, S=(0.78±0.25) ms, =1.95±0.2. Thus, the unnatural temperature depend-

ence of the order parameter in the microcrystalline sample (the decrease of the motional am-

plitude with increasing temperature) can be explained. The F-distribution can also explain the

very weak temperature dependence of the correlation time F. To demonstrate this, we fitted

the R1 data measured at T= 9 ºC using Eqs. S3 and S4 with fixed S
2
=0.975 and =1.95; that

is, we assumed that at lower temperature the F-distribution has the same distribution width.

We could also obtain good fitting with the following set of the remaining fitting parameters:

A=0.73±0.03, F=(0.43±0.03) s, S=(0.66±0.07) ms. So, now F decreases about two times,

and S
2
 stays the same upon increasing temperature from 9 ºC to 29 ºC.

Qualitatively, the apparent effect of decreasing motional amplitude with increasing tempera-

ture (see Tab.2 of the main paper) can be explained by a limited dynamic window of the R1

experiment. This window is determined by the combinations of the MAS and spin-lock fre-

quencies, at which the spectral density function is being sampled in the R1 experiment, see

Eqs. 1-3 of the main paper. If a temperature variation shifts a correlation time of a motion out

of this window, the motion becomes "invisible" for the experiment. This is what we most

probably observe in the microcrystalline sample: F at higher temperature becomes too short

to contribute to the relaxation rate and thus, the apparent amplitude of the motion becomes

smaller. This is not the case for the powder sample since F for this sample is about one order

of magnitude longer than for the microcrystalline one. Hence, temperature increase up to 29

ºC cannot shift the fast component out of the dynamic window.

Fig. S3 presents the simulated R1 dispersions for two cases, assuming no correlation times

distributions (Eq. 8 of the main paper) and assuming log-normal F-distribution (Eqs. S3 and

S4) for two temperatures. One may see that solid and dashed curves are practically indistin-

guishable within the range of the spin lock frequencies used in our experiments. They differ

5

only at much larger frequency differences (SL-MAS), which are more difficult to achieve in a

real experiment. We note that the values of the fitting parameters obtained assuming F-

distribution are not “more correct” compared to the data presented in Tab. 2 of the main paper

since fitting was performed with quite arbitrary fixing some of the parameters and using phe-

nomenological distribution function. This is only an example demonstrating how correlation

time distribution may explain the apparent unnatural temperature behaviour of some dynamic

parameters.

0 10 20 30 40 50 60 70 80

10

100

spin lock frequency / kHz

R
1

 /
 s

-1

Figure S3. Simulated R1 dispersions (standard R1, without proton decoupling) for the micro-

crystalline sample at temperatures 9 ºC (blue lines) and 29 ºC (red lines). Solid and dashed

lines correspond to the simulations assuming no correlation times distributions (Eq. 8 of the

main paper) and assuming log-normal F-distribution (Eqs. S3 and S4), respectively. The

simulation (fitting) parameters for the solid curves are shown in Tab.2 of the main paper, the

ones for the dashed curves are mentioned in the text.

6

3 MEASUREMENTS OF THE MOTIONALLY AVERAGED 15N-1H DI-

POLAR COUPLINGS

-4 -3 -2 -1 0 1 2 3 4
kHz

kHz

32
28

24

19
14

10
6

Temp. / oC

3.12 kHz

3.3 kHz

Microcrystals

-4 -3 -2 -1 0 1 2 3 4

32
28

24

19
14

10
6

Temp. / oC

Powder

Figure S4. Projections of the Fourier-transformed dipolar modulations measured using R-

PDLF pulse sequence for the microcrystalline and powder samples at different temperatures.

The residual
15

N-
1
H dipolar couplings were obtained by the division of the peak splittings

(indicated in the figure) by the scaling factor 0.315. The parameter
2

NHC (Eqs. 1 and 3 of the

main paper) was calculated by multiplication of the dipolar coupling by 2 and taking square

of this value. The dipolar couplings measured at the CP contact time 0.5 ms (data not shown)

are practically the same.

7

4 HEATING EFFECT OF THE LONG 15N SPIN-LOCK AND 1H DECOU-

PLING PULSES

To quantify the heating effect caused by long RF pulses, we measured the sample temperature

of microcrystalline GB1 protein after applying these pulses. This sample had a complex com-

position of the crystalline liquor, resulting in a
1
H spectrum with many sharp peaks, see Fig.

S5.

11 10 9 8 7 6 5 4 3 2 1 0 -1 -2

ppm

Figure S5.

1
H spectrum of the microcrystalline GB1 sample measured at t= 9 °C. The absolute

ppm-scale has only been approximately calibrated.

Two peaks were selected (marked by red arrows in Fig. S5) and used as an internal ther-

mometer, with the chemical shift difference between them revealing the temperature depend-

ence (Fig. S6). The temperature slope of this distance was found to be 7.9 Hz/degree.

8

4.0 3.9 3.8 3.7 3.6 3.5 3.4

ppm

 T= 9 oC

 T= 11 oC

 T= 13 oC

Figure S6. Zoomed region of the

1
H spectrum measured at three different temperatures.

The sample temperature was measured using the pulse sequence shown in Fig. S7, with

maximum duration of the
15

N spin-lock and proton decoupling pulses used in the R1 meas-

urements.

Figure S7. The pulse sequence for checking the heating effect. The repetition delay 4 s (as in

the R1 experiments), number of accumulations 128.

The spectrum was measured after delay D2, which was varied from 50 ms to 4 s. The heating

effect (ΔT) as a function of D2 is shown in Fig. S8, with ΔT=0 corresponding to the spectrum

measured without long
1
H and

15
N pulses. These data show that the cumulative

1
H and

15
N

heating at maximum pulse duration is less than 1 degree. The open circle in Fig. S8 shows

that
15

N spin-lock heating is smaller but comparable to the proton pulse heating. Heating of

the powder GB1 sample is expected to be even smaller since it contains no dissolved ions.

9

0.1 1
0.0

0.2

0.4

0.6

0.8

1.0

D2 / s

DT / oC

Figure S8. The heating effect (increased sample temperature after the long pulses) as a func-

tion of the delay D2 in the pulse sequence shown in Fig. S7. The open circle indicates the

sample temperature after only
1
H pulse (without

15
N spin-lock). The experiments were con-

ducted at a temperature 9 °C.

10

5 R1Ρ EQUATION FOR HETERONUCLEAR DIPOLAR INTERACTION

BETWEEN SPINS ½ UNDER PROTON DECOUPLING AND MAS

5.1 WAY OF CALCULATION

We use quantum-mechanical master equation for the weak-collision case. That means that

coherent processes are not important for the time evolution. We use the Bloch-Redfield-

Wangsness approach; for some basics see [1,2,3], for an overview: [4].

     
0

d
d

ˆ ˆ ˆ ˆ, ,
d



  



 




ρ
τ H t t ρ t

t
H τ (S5)

Often it can be expected that a system of equation of observables contains less scalar quations

than that of the full density matrix. Suppose an observable O is represented by the operator Ô,

then

 

      

      
0

0

ˆ

ˆˆ ˆ ˆTr , ,

ˆˆ ˆ ˆTr ,

Tr an

,

d

d
d

d

d





  
  

  
  



 

 





O

O

t

ρ O

τ H t H t τ ρ t O

τ H t τ H t O ρ t

 (S6)

The latter expression has been obtained under the condition that the trace of a product of ma-

trices is invariant with respect to a cyclic permutation of its factors even if they do not com-

mute.

The magnetization of I spins as well as that of S spins are the observables of interest here:

   ˆˆˆ ˆ;Tr Tr  S xSI I xγ ρ IM γ ρ SM (S7)

The generic average symbol 〈〉 includes both orientational average and time average. Follow-

ing the arguments of Abragam [3], we assume that the t-averaging over the operator expres-

sion is performed independently on that over the density matrix because of the stationary

character of the former. We emphasize it by using an extra time variable:

     
1

1

0

1
, ,

ˆ ˆ ˆ ˆTr , ,
d

d
d


     


 

 I x
t θ

I

φ

γ τ H t τ H t I ρ t
M

t
 (S8)

1
 N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73 (1948) 679

2
 R. K. Wangsness, F. Phys. ev. 89 (1953) 278

3
 A. Abragam, „The Principles of Nuclear Magnetism“, Clarendon Press, Oxford 1961

4
 M. Goldman, J. Magn. Res. 149 (2001) 160

11

5.2 CONDITIONS OF VALIDITY

Validity of the QM master equation:

1. The basis of the wave-function space is chosen so that both 0
ˆ ˆ ˆ and [,]H H ρ average to

zero over the ensemble; this corresponds to isotropic samples. The initial state corre-

sponds to the magnetization after π/2 pulse, i.e. 0
ˆˆ ~ xρ I ;

2. The motional correlation time is much shorter than the relaxation time,
1c ρτ T .

Additional preconditions for this derivation

 In-resonance irradiation of S spins as well as I spins;

 Spin ½ (larger spin quantum number: in most cases, quadrupolar interaction dominates

the relaxation);

 Ensemble of isolated spin pairs.

5.3 CALCULATION STEPS

1. Transformation of the Hamiltonian into a basis where the first condition of 4.2 is ful-

filled (details of the transformations can be found in numerous textbooks);

2. Averaging;

3. Evaluation of the commutators occurring on insertion of the selected Hamiltonian into

Eq.(S6);

4. Integration;

5. Deriving the relaxation time(s) from the differential equation of magnetization(s);

6. Inserting the appropriate expressions for the spectral densities. The sample spinning

(MAS) is included in this step.

5.4 HAMILTONIANS IN THE LABORYTORY FRAME

5.4.1 Total Hamiltonian

Two spin species: I and S

t Z rf DD

Z 0 0

rf 1 0 1 0

DD

Zeeman interaction

2 cos 2 cos rf irradiation along

dipolar

ˆ ˆ ˆ ˆ ;

ˆˆ ˆ

ˆˆ

interaction; see b

ˆ

ˆ elow

  

  









 

I z S z

I SxI Sx t

H H H H

H ω I ω S

H ω I ω ω S ω

H

t x
(S9)

5.4.2 Dipolar Hamiltonian

In their famous paper from 1948, Bloembergen, Purcell and Pound [1] decomposed the Ham-

iltonian in the laboratory frame into six terms („dipolar alphabet“); for spin pairs:

 D 3D
ˆ ˆˆ ˆ ˆ ˆ ;ˆ : I S

IS ISH A B C
γ γ

C CD E
r

F     (S10)

which have different effect on the spin system:

12

 

  

 

 

2

2

2 2

2 2

1 3cos Δ 0

1
1 3cos Δ 0

4

3
sin cos Δ 1

2

3
sin cos Δ 1

2

3
sin Δ 2

4

3
sin

ˆ ˆˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆˆ ˆ

ˆˆ Δ 2
4

ˆ

   



 



 



 



 

  

    

    

    

   

   

i

z z

i

z z

i

i

z z

φ

φ

φ

φ

A θ I S

B θ I S I S

C θ θ I S I S

D θ θ I S I S

E θ I S

F θ I

m

m

e m

e m

e m

mSe

 (S11)

Each of these terms can be separated into both geometrical function Fq and operator compo-

nent Âq :
2

2

DD
ˆˆ



 IS q

q

qAC FH (S12)

where

 2 2

2

2

0 1

3 3
() 1 3cos sin cos sin

2 4
; () ; ()

*





   



φ φ

q

i i

q

θ t θ θF t F e F e

F F

t θ
 (S13)

   0

1

2

†

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆˆ ˆ

ˆ ˆˆ

ˆ

2

ˆ

  



 







     

 





z z z z

z

x y

q

x y

z

q

A I S I S I S I S I S I S

A I S I S

A I S

A A

 (S14)

5.5 HAMILTONIANS IN THE ROTATING FRAME

5.5.1 Transformation

The static Zeeman part of the Hamiltonian is removed by the following transformation ap-

plied to Hamiltonian as well as density matrix:

   

     

R LKS

R rf DD

ˆ ˆˆ ˆexp exp

ˆ ˆ ˆ ˆ ˆexp exp







 

Z Z

Z Z

tρ i H ρ i H

H i H H H it H

t

t
 (S15)

Product-operator rules can be applied to transform linear and bilinear terms of the spin-

operator components.

5.5.2 rf part

R,rf 1 1 0 ; components rotatinˆˆ g with 2ˆ   I S I Sx xH ω I ω S ω (S16)

13

The counter-rotating components are neglected as usually.

5.5.3 Components of the dipolar Hamiltonian

The transformation of the five operator parts gives

   

 

 

0 0

0 0

0

0 0

0 0

0 0

0

0 R0

1 R1

1 R

2

-1

R2

R-22

1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
4 4

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆˆ ·

ˆ ˆ ˆˆ ·

 

 

 



 



 

  





























 

 

 





S I

I S

I S

I S

I S

I S

i ω ω i ω ω

z z

iω iω

z z

iω iω

z z

i ω ω

i

t

ω ω

t

t t

t t

t

t

e e

e e

A A I S I S I S

A A I S I S

A A I S I S

A A I S

A A I

e

eS

e

e

 (S17)

5.6 DOUBLE-ROTATING FRAME

5.6.1 Transformation

To remove any constant part of RĤ , the rf part must be eliminated. This is performed by the

transformation

     1 1 1 1
ˆ ˆˆ ˆˆˆ exp exp  I S I Sx x x xtσ i ω I ω S ρ i ω I ω S t (S18)

     DR 1 1 R 1 1
ˆ ˆˆ ˆ ˆ ˆexp exp   I S I Sx x x xtX i ω I ω S X i ω I ω S t (S19)

where represents a generic operator.

5.6.2 Components of the dipolar Hamiltonian

This transformation gives

   

     
   

 

0 0 0 0

0

0 0

0

†

DR0

DR1

DR2 1 1 1 1

1 1 1 1

1 1 1 1

ˆ

ˆ

ˆ ˆ ˆˆ ˆ2

ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

cos sin

cos sin

cos ˆ ˆsin cos sin

ˆ

 













 

    


   



 





 

I S

S

I

I

I S

S

i ω

t t

t

z y z

ω t i ω ω t

iω iω

i ω ω

x x I S I S

I S I S

y x I x I x S x S

A a b b

A c d

A I S Q ω ω R ω ω

Q ω ω R ω ω

I S ω

e e

e e

e t t

t t

i t t tI S ω I S ω I S ω t

A †

DR - DR
ˆq qA

(S20)

with

   

   

1 1 1 1

1 1 1 1

cos cos

sin s

ˆ ˆˆ :

ˆ ˆ in

 

 

   

   

I S I S

I S I S

a Q ω ω Qt t

t

ω ω

R ω ω R ω ω t
 (S21)

14

   

   

 

1 1 1 1

1 1 1 1

1 1 1 1

1
cos cˆ ˆ ˆ ˆˆ os

4
:

ˆ ˆ

ˆ

sin sin

c ˆ ˆ ˆˆ ˆos sin ˆ cos inˆ s







    

   

  





x x I S I S

I S I S

y x I z x I x S x z Sy

b I S Q ω ω Q ω ω

R ω ω R ω ω

I S

t t

t t

i t tω I S ω I tS ω I S ω t

 (S22)

   
   



1 1 1 1

1 1 1 1

1 1

cos sin

cos sin

c

ˆˆˆ :

ˆˆ

ˆ ˆˆ os siˆ n



 

   


   


 

 I S I S

I S I S

x S xz y S

c R ω ω Q ω ω

R ω ω Q ω ω

I S ω

i t t

t I S ω

t t

t

 (S23)

   
   



1 1 1 1

1 1 1 1

1 1

cos sin

cos sin

c

ˆ ˆˆ:

ˆˆ

ˆ ˆˆ os siˆ n



 

   


   


 

 I S I S

z x y

I I S

I Ix

S

d R ω ω Q ω ω

R ω ω Q ω ω

I S ω

i t t

t I S ω

t t

t

 (S24)

and the shortcuts

   ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ;
1 1

: :
2 2

   z z y y y z z yQ I S I S R I S I S (S25)

5.7 ENSEMBLE AVERAGE AND INTEGRATION

5.7.1 Averaging toward correlation function

Insertion of the Hamiltonian into Eq. (S8):

     

         

1

1

1 1
, ,

2
2

DR 1

0

DR,
, 2

 1

0

ˆ ˆ ˆTr , ,

ˆ ˆ ˆTr , ,

dM
d

d

d







       

 
      



 

 








I

p p

I x
t θ φ

I IS q q xθ φ tp q

γ τ H t τ H t I ρ t

γ C τ t τ t A t τ ρ

t

F tF A t I

 (S26)

The orientation average is restricted to the geometrical functions only.

5.7.2 Correlation functions

We assume stationary behaviour of the thermal motion. This means that the orientation aver-

age must not depend on t. The geometrical parts form the products    0 0pqF F . Their φ de-

pendency is described by the factor   exp  i p q φ which follows from the definition of

the Fp . Hence    0 0pqF F is zero for an isotropic sample unless p = - q. Consequently,

only the following terms which are the autocorrelation functions survive the averaging:

15

     

       

       

2 2

0 00 0

1 1 1 1 1 1

0

2

0

2

1

2

2 2 2 2 22

() ;

() ; (0)

() ; (0

4
0

5

3
*

10

3
*)

10





    

     

     

F τ τ

F τ F τ τ

F

t F t F K K F

t F t t F t K K F

t F t t Fτ K FF τKτ t

 (S27)

Therefore the orientational averaging reduces the number of terms if the sample is isotropic:

     
1

DR

2

 1 1

0

2

DR

2

ˆ ˆ ˆ() ·Tr , ,
dM

d
d







      



  

I
qIS q xq

tq

C K τ τ A ρt τ A
t

It t (S28)

5.7.3 Particular case for q = 0

   

         

     

   

0 0

0 0

DR0 1 DR0 1

†

1 1 1 1

†

1 1

0 0 1 0 0 1 + terms oscillating wi

ˆ ˆ ˆ, ,

ˆ ˆˆ ˆˆ ˆ, , , ,

ˆ ˆ ˆ, ,

 oth r 2







  
  

       
      

 



 

 
  

I S

I S

x

i ω ω τ

x x

i ω ω τ

x

I S I S

A t τ A t I

a t τ a t I b t τ b t I

b t τ b t I

ω ω t ω ω

e

t

e

 (S29)

5.7.4 Particular case for q = 1

   

       

       

1 1 1 0 10 0 0

0 0

†

DR1 1 DR1 1

† †

1 1

† †

1 1 1 1

1+ terms oscill

ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ, ,

ˆ ˆˆ ˆˆ ˆ,

ating vs

,

.

, ,

  

   
  

   
  

       
   

 


 



 

I S SI

I S

t t t t

x

iω τ iω τ iω iω

x

iω τ iω τ

x x

A t τ A t I

c t τ d t τ c d I

c t τ c t I e d t τ d

e e

t I e

e

t

e
 (S30)

5.8 EVALUATION OF THE COMMUTATORS

5.8.1 Helpful commutator rules

Commutator rules for the shortcuts defined above can be derived from the well-known spin-

operator rules:

   

, , ,ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; ; ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

,

, ,
8 8

, , , , 0

    

  

       

  



           
      

       
   

          
     





x x x x

x x x x

Q I R R I Q Q I R R I Q

Q R I S Q R I S

Q R Q R Q Q R R

i i i i

i i

16

5.8.2 Inner commutators

     

   

   

    

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

cos cos

sin sin

cos cos

ˆ ˆˆˆ ,

ˆ ˆ ˆ,

ˆ ˆ

ˆ ˆsin sin

x I S I S

I S I S x

I S I S

I S I S

a t I Q ω ω Q ω ω

R ω ω R ω ω I

i R ω ω R ω ω

Q ω ω Q ω

t t

t t

t t

t tω

 

 

 

 

   


   


  



 



 



 

 (S31)

     

   

 

   

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1
cos cos

4

sin sin

cos sin cos sin

cos co

ˆ ˆ ˆ ˆˆ ˆ,

ˆ ˆ

ˆ ˆ

s si

ˆ ˆˆ ˆ ˆ ˆ ˆ,

ˆˆ nˆ
4

z

x x x I S I S

I S I S

y x I x I x Sy zx S x

I S I S

t tb t I I S Q ω ω Q ω ω

R ω ω R ω ω

I S ω I S ω I S ω I S ω I

R ω ω R ω ω Q ω

t t

i t t t t

i
t t

 







 

  


     

   

   


   



    

    

1 1

1 1 1 1 1 1 1
ˆ ˆˆ1

sin cos sin
4

ˆ

I S

I S I I xz y

ω

Q ω ω I ω I ωt t t S

t





   

 (S32)

   

    

   

   

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

cos sin

cos sin

cos

ˆˆ ˆˆ() ,

ˆˆ

ˆ ˆˆ ˆ ˆsin ,

cos sinˆ ˆ

ˆ c sinˆos

z

x I S I S

I S I S

x S x S x

I S I S

I S I S

y

c t I R ω ω Q ω ω

R ω ω Q ω ω

I S ω I S ω I

Q

i t t

t t

t

ω ω R ω ω

Q ω

t

R ω

t

t tω ω

t

















   


   

 


   

   

  
 

 (S33)

   

    

   

   

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

ˆ ˆˆ ˆ() ,

ˆˆ

ˆ ˆ

cos sin

cos sin

cos sin ,

cos sin

cos sin

co

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆˆ ˆs

x I S I S

I S I S

S S x

I S I S

I S I S

y S

z x

x

y x

i t t

t t

t t

t

d t I R ω ω Q ω ω

R ω ω Q ω ω

I S ω I S ω I

Q ω ω R ω ω

Q ω ω R ω ω

I S ω

t

t t

i t i













 

  


   


   

 


   

 



 

  1 1siˆ nz SxI S ω t

 (S34)

17

     

    

 

 

0 0 1

DR2 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

()

cos sin

cos sin

cos sin cos sin

cos s

ˆ ˆ,

ˆ ˆˆ ˆ2

ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

nˆˆ2 i

,















  
 

    

   

   


 



 


I S

x

i ω ω

x x I S I S

I S I S

y x I x I x S x S x

t

I

z

S I

z y

A I

I S Q ω ω R ω ω

Q ω ω R ω ω

I S ω I S ω I S ω I S ω I

i

t

e t t

t t

i t t t t

R ω ω ωt Q ω   
     0 0 1

1 1 1 1 1

1 1 1 1 1 1 1

ˆ

ˆ ˆ ˆˆ

cos

sin cos ˆ sin




 

    I S

S I S

i ω ω

I S x

t

Iz y x I

R ω ω

Q ω ω I

t t

t t I eS ω S ω t

 (S35)

5.8.3 Outer commutators for q = 0

   

     

     

   

   

      

1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

ˆˆ ˆ, ,

ˆ ˆ

ˆ ˆ

ˆ

cos cos

sin sin ,

cos coˆ

ˆ

s

sin sin

1
cos cˆ oˆ s

8

ˆ

 

 

 

 

  
  





     


     

  

   


   

x

I S I S

I S I S

I S I S

I S I S

x x I S I S

i t t

t t

t t

a t τ a t I

Q ω ω τ Q ω ω τ

R ω ω τ R ω ω τ

R ω ω R ω ω

Q ω ω Q ω ω

I S ω ω τ

t

ω ω

t

t t

      

      

      

       

1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1
cos cos

8

1
sin sin

8

1
sin sin

8

co

ˆˆ

ˆˆ

ˆˆ

1
s cos

1ˆ ˆˆ ˆ
8 8





    

  





    

   

x x I S I S

x x I S I S

x x I S I S

x x I S x x I S

t t

t

I S ω ω τ ω ω

I S ω ω τ ω ω

I S ω ω τ ω ω

I S ω ω τ I S ω

t

ω

t

t

τ (S36)

18

   

     

     

   

   

 

1 1

1 1

1

†

1 1 1 1

1 1 1 1

1 1

1 1

1

1

1 1

1

11

1

ˆ ˆ ˆ,

1 ˆ ˆ ˆˆ cos cos
4

ˆ ˆsin sin

ˆ ˆˆ ˆcos cos

ˆ ˆˆ ˆsin sin ,

ˆ ˆcos
4

 

 

 

   
  

       


     

   

   

  

x

x x I S I S

I S I S

y x I x y S

x z S z x I

I S

b t τ b t I

I S Q ω ω t τ Q ω ω t τ

R ω ω t τ R ω ω t τ

i I S ω t τ I S ω t τ

I S ω t τ I S ω t τ

i
R ω ω t R  

    

 

1 1

1

1

1 1

1

1 1 1

1 11

cos

ˆ ˆsin sin

1 ˆˆ ˆcos sin
4

 



   


  



I S

I S I S

z I y I x

ω ω t

Q ω ω t Q ω ω t

I ω t I ω t S

 (S37)

 

      

      

      

      

 

1 1

1 1 1 1

1 1 1 1

1

1 1

1 1

1 1 1

1 1 1 1

1

1 1

1 1

1 1

1 11

1 ˆ ˆcos sin
16 4

1 ˆˆ cos cos
8

1 ˆˆ cos cos
8

1 ˆˆ sin sin
8

1 ˆˆ sin sin
8

1 ˆ cos cos
4


 



    

    

    

    

 

y I z I

x x I S I S

x x I S I S

x x I S I S

x x I S I S

x I I

i
I ω t I ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I ω t τ ω t  

       

1 1

1

1 1

1 1 1 1 1

1

1 ˆ sin sin
4

 further terms which contain a dependence.

1 1 1ˆ ˆˆ ˆ ˆcos cos cos
128 128 64

 terms oscillating vs.

 



      



x I I

x x I S x x I S x I

I ω t τ ω t

t

I S ω ω τ I S ω ω τ I ω τ

t

(S38)

Insertion into Eq. (S29) and t1-averaging:

   

       

       

 

1

1 1

DR 0 DR 0

1

1 1

1

1 1

01 0

cos cos

1 1ˆ ˆˆ ˆcos cos
6

ˆ ˆ ˆ, ,

1 1

4 64

1 ˆ cos co

ˆ ˆˆ ˆ
8 8

s
32

   


    

  






 
  

 

 






x x I S

x
t

x x I S x x

x x

I S

I

I

x S

S

I

A t τ A t I

I S ω ω τ I

I S ω ω

S ω ω τ

ω

τ I S ω ω τ

I ωω τ τ

 (S39)

19

5.8.4 Outer commutators for q = 1

 

     

     
   

   

   

1 1

1 1

1 1

†

1 1

1 1 1 1

1 1 1 1

1 1

1 1 1 1

1 1 1

1

1 1

1

ˆˆ ˆ, () ,

ˆˆ cos sin

ˆˆ cos sin

ˆ ˆˆ ˆcos sin ,

ˆ ˆcos sin

ˆ ˆcos sin

 

 

 

 

   
  

      


     

   

  

   

x

I S I S

I S I S

x z S x y S

I S I S

I S I S

c t τ c t I

i R ω ω t τ Q ω ω t τ

R ω ω t τ Q ω ω t τ

I S ω t τ I S ω t τ

Q ω ω t R ω ω t

Q ω ω t R ω ω t

      

      

      

      

       

1

1 1

1 1

1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

1 1

1 1

1 ˆˆ cos cos
8

1 ˆˆ sin sin
8

1 ˆˆ cos cos
8

1 ˆˆ sin sin
8

1 1ˆ ˆˆ ˆcos cos
8 8




    

    

    

     

      

x x I S I S

x x I S I S

x x I S I S

x x I S I S

x x I S x x I S

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t T

I S ω ω τ I S ω ω τ T

 (S40)

 

     

     
   

   

   

1 1

1 1

1 1

1

†

1 1 1 1

1 1 1 1

1 1

1 1

1

1

1 1 1 1

1 1 1 1 1

ˆ, () ,

ˆˆ cos sin

ˆˆ cos sin

ˆ ˆˆ ˆcos sin ,

ˆ ˆcos sin

ˆ

ˆ ˆ

ˆcos sin

 

 

 

 

  
  

      


     

   

  

   

x

I S I S

I S I S

z x S y x S

I S I S

I S I S

t τ t I

i R ω ω t τ Q ω ω t τ

R ω ω t τ Q ω ω t τ

I S ω t τ I S ω t τ

Q ω ω t R ω ω t

Q ω ω t R ω ω

d

t

d

      

      

      

      

       

1 1 1 1

1 1 1

1 1

1 1

1 1

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1 ˆˆ cos cos
8

1 ˆˆ sin sin
8

1 ˆˆ cos cos
8

1 ˆˆ sin sin
8

1 1ˆ ˆˆ ˆcos cos
8 8




    

    

    

     

      

x x I S I S

x x I S I S

x x I S I S

x x I S I S

x x I S x x I S

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω t τ ω ω t T

I S ω ω τ I S ω ω τ T

 (S41)

Insertion into Eq. (S30) and t1-averaging:

20

       

       

        
 

† †

DR1 1 1 DR1 1 DR1 1

† †

1

DR1

1 1

1 0

1

1 1 0 1

0 0

1

1

ˆ ˆ ˆ ˆˆ ˆ, , ,

2 2

1 ˆ ˆˆ ˆcos co

,

ˆ ˆˆ ˆˆ ˆ, , cos , , cos

cos c

4

os

s

 

 



  

      
      

      
     







 






x

x x

x I x S

x I S x

S

S

I

x I

A t τ A t I A t τ A t I

c t τ c t I ω d t τ d tt t T

I S ω ω τ I S

I

ω ω τ

ω

ω τ ω τ T

 (S42)

5.8.5 Outer commutator for q = 2

 

       

     

   
   

0 0

†

DR 2 1 DR2 1

1 1 1 1 1

1 1 1 1

1 1

1

1 1

1 1

1 11 1

ˆ ˆ ˆ, () ,

ˆ ˆˆ ˆ· 2 cos 2 sin

ˆ ˆ2 cos 2 sin

ˆ ˆˆ ˆcos sin

ˆ ˆˆ ˆcos sin ,

2



 

 

   
  

      


     

   

   

I S

x

i ω ω τ

x x I S I S

I S I S

y x I z x I

x y S x z S

A t τ A t I

e I S Q ω ω t τ R ω ω t τ

Q ω ω t τ R ω ω t τ

i I S ω t τ I S ω t τ

I S ω t τ I S ω t τ

   

    

        

      

 

0 0

1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1

1 1 1 1

1 1 1

1 1

1 11

1

ˆˆ cos sin

ˆˆ cos sin

ˆ ˆˆ ˆcos sin

1 ˆˆ· cos cos
2

1 ˆˆ sin sin
2

1 ˆˆ cos
2

 

 



  

   

 



    



    

  

I S

I S I S

I S I S

z x I y x I

i ω ω τ

x x I S I S

x x I S I S

x x I

i R ω ω t Q ω ω t

R ω ω t Q ω ω t

I S ω t I S ω t

e I S ω ω t τ ω ω t

I S ω ω t τ ω ω t

I S ω ω    

      

   

         0 0

1 1

1 1

1 1

1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1

1

cos

1 ˆˆ sin sin
2

1 1ˆ ˆcos cos sin sin
4 4

1 1ˆ ˆˆ ˆ· cos cos
2 2

1 ˆ cos
4



 

    

   


     




 



I S

S I S

x x I S I S

x I I x I I

i ω ω τ

x x I S x x I S

x I

t τ ω ω t

I S ω ω t τ ω ω t

I ω t τ ω t I ω t τ ω t

e I S ω ω τ I S ω ω τ

I ω τ

(S43)

21

   

       

 

† †

DR 2 1 DR2 1 DR 2 1 DR 2

1 1 1 1

0

1

1

0

() ()

1ˆ ˆˆ ˆ ˆcos cos cos
2

c

ˆ ˆ ˆ ˆˆ ˆ, , ,

o

,

s

        
      

 
     







 
x x I S x x I

x x

I S

S x I

t t t t

I S

A τ A I A τ A I

ω ω τ I S ω ω ω

ω

I

ω

τ τ

τ

(S44)

5.9 INTEGRATION TOWARD SPECTRAL DENSITY

5.9.1 General expression

In Eq. (S26) we have to integrate expressions of the type

   

       

   

0

0 0

Ω Ω

1
Ω Ω Ω Ω Ω

cos d

cos cos d cos Ω
2

1
Ω Ω Ω Ω

2

cos d

K τ τ τ J

K τ τ τ τ K τ τ τ τ

J J



 



    
 

    
 



  (S45)

which gives the function J(Ω) known as spectral density.

5.9.2 Influence of MAS on a general correlation function

The correlation loss of the orientations of internuclear vectors caused by thermal motion is

superimposed by a periodic modulation caused by sample rotation [5]:

rot rotsta rott

2
() () cos cos2

3 3

1 
  

 
K τ K τ ω τ ω τ (S46)

where Kstat represents the correlation function of the same vectors if the sample were non-

rotating.

5.9.3 Influence of MAS on a general spectral density

   

     

   

rot stat

st

rot rot rot

0 0

rot rot

0

rot rot

at

1
cos d cos d

1

2
Ω cos cos2 Ω

3 3

cos Ω cos Ω
3 3

cos Ω 2 cos Ω 2

1

1 1
d

6 6

J K τ τ τ K τ ω τ ω τ τ τ

K τ ω τ ω τ

ω τ ω τ τ

 



 
  

 


   




  



 


 

 (S47)

hence

         rot stat rot stat rot stat rot stat rotΩ Ω Ω Ω
1 1 1 1

6 6
2 Ω 2

3 3
       J ω J ω J ω J ωJ (S48)

5
 S. Clough, K.W. Gray, Proc. Royal Soc. 79 (1962) 457

22

5.10 RESULT

5.10.1 Differential equation of observables

Inserting Eqs.(S39), (S42) and (S44) into Eq. (S26) yields

        

     

     

   

 

2

0 1 1 0 1 1

0 0 0 0 0 0

0 0 0

1 1 1 1

1 1 1 1

1

0 0 0

0 0 0 0 0 0

1

1

0

dM

d

1

128

1

128

1

64

1

1

8

8

IS I S I S

I S I S

I S I S

I

I
I S I S

I S I S I S

I S I S I S

I I

I S

I S I S

I

M JC M ω ω M ω ω

M ω ω ω ω

M ω ω ω

M J
t

M J ω ω J ω ω

M J ω ω J ω ω

M J ω J ω

M J ω

ω

ω ω ω ω

M ω


    



         

          

       





 



   

   

     

   

     

   

1 1 1 1

1 1 1 1

1 1 1 1

1 0

1 0 1 0

1 0 1 0

1 1 1 1 1

1 1 1

0 1 0

2 0 0 2 0 0

2 0 0 21 0

1

1

1

2

1

2

1

8

I S I S

I S I S

I S I S I S

I S I S

I

S S

I I

S S

I S I S

I S

I S I S I S

I S I S I

ω J ω ω

J ω ω J ω ω

M J ω ω J ω ω

J ω ω J ω ω

M J ω ω J

ω

ω ω

M ω ω

ω ω

M ω ω ω ω

M ω ω ω

ω ω

M J ω ω J

   

      

      

      

         

    



  

   

0

2 0 0 2

1 1

1 1 10 0 1

1

4

S

I I S I

I S

I S I SS

ω ω

M J ω ω J

ω

ω ω ω ωω ω

    


         



(S49)

with  ·SS I SM γ γM .

An identical equation is obtained for MS by interchanging indexes “I” and “S”.

5.10.2 Extraction of the relaxation times

Eq. (S49) and its analogue for MS can be written in the form

1 1

1 1

d 1 1

d

d 1 1

d

S

S

I I

ρII ρIS

I

ρSI ρSS

S

M M M
t T T

M M M
t T T

  

  

 (S50)

with

23

    

   

   

   

   

 

2

0 1 1 0 1 1

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0

1 1 1 1

1 1 1 1

1 1

1 1 1 1

1 0 1 1 1

1

1

128

1

64

1

1

8

8


  



       

       

       

     

   





IS I S I S

ρII

I S I S

I S I

I S I S

I S S

I S I S

I S

I I

I S I S

I S

I I

S

J J
T

J ω ω J ω ω

J ω ω J ω ω

J ω J ω

J ω ω

C ω ω ω ω

ω ω ω ω

ω ω ω

J ω ω

J ω ω

ω

ω ω ω ω

ω

ω J

ω

ω 

   

   

   

   

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0

1 0 1 0

1 0 1 0

2 0 0 2 0 0

2 0 0 2 0 0

1

2

3

4

 

     

      

         


         



I S

I S I S

I S I

S

I I

S S S

I S I S

I S

I S I S

I S I S I S

ω ω

ω ω

ω ω

ω ω

J ω ω J ω ω

J ω ω J ω ω

ω ω

ω ω ω ω

J ω ω J ω ω

J ω ω J ω ω (S51)

and

    

   

   

   

   

 

2

0 1 1 0 1 1

1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0

1 0 1 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

11 0 1 1 0 1

11

1

128

1

8

8


   



       

        

     

      

    

IS I S I S

ρIS

I S I S

I S I

I S I S

I S I S

I S I S

I S I S

I S

S

I I

S S

I I

J J
T

J ω ω J ω ω

J ω ω J ω ω

J ω ω J ω ω

J ω ω J

C ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω

ω ω ω

ω J ωJ ω

ω

ωω  

   

   

   

1 0 1 0

2 0 0 2 0 0

1

1 1 1 1

1 1 1 1

1 12 0 0 2 0 0 1 1

1

2



      

       

        

I S

I S I S

I S I

S S

I S I S

I

S

I S IS S SI

ω

J ω ω J ω ω

J ω ω J ω ω

J ω ω J ω

ω ω

ω ω ω

ω ω

ω

ω ω ω

 (S52)

Equations for the two remaining relaxation times can be obtained by exchanging indexes “I”

and “S”.

5.10.3 Approximation: Large Larmor frequency

Usually, 0 0 1 1 rot, , ,I S I Sω ω ω ω ω :

Spectral densities with static Larmor frequencies in the argument are usually small compared

to the first terms, therefore they can be omitted. Only terms without both ω1I and ω1S remain:

24

   

   

2

0 1 1 0 1 1

1

2

0 1 1 0 1 1

1

1 1

8

1 1

8

     

     

IS I S I S

ρII

IS I S I S

ρIS

C J ω ω ω ω

ω ω ω ω

J
T

C J J
T

 (S53)

5.10.4 MAS

Replacing J0 in Eq. (S53) by Eq. (S48) and using 0 (0) 4 5K (Eq. (S27)) we finally get

   

   

   

   

   

2

0 1 1 rot 0 1 1 rot

1

0 1 1 rot 0 1 1 rot

0 1 1 rot 0 1 1 rot

0 1 1 rot 0 1 1 rot

2

0 1 1 rot 0 1 1 rot

1

0 1

2 2

2 2

2 2

2

1 1

60

1 1

6

2

2 2
0

   

 

   



 

   

 

    

 



   



IS I S I S

ρII

I S I S

I S I S

I S I S

IS I S I S

ρIS

I

J ω ω ω J ω ω ω

J ω ω ω J ω ω ω

J ω ω ω J ω ω ω

J ω ω ω J ω ω ω

J ω ω ω J ω ω ω

J

T

ω

C

C
T

ω   

   

   

1 rot 0 1 1 rot

0 1 1 rot 0 1 1 rot

0 1 1 rot 0 1 1 rot

2 2

2 2

2 2



   



  

 

     

S I S

I S I S

I S I S

ω J ω ω ω

J ω ω ω J ω ω ω

J ω ω ω J ω ω ω

 (S54)

25

6 SPINACH CODE FOR R1 SIMULATIONS

File "R1rho_Hdec_input.m"

% sample input for R1rho_1Hdec.m pulse sequence

% two site chemical exchange jump model

% jurackhannes@gmail.com

% written in MATLAB R2021a Update 2

% and Spinach version 2.6.5608 (June 2021)

% needed User inputs marked with !!

% explanations can be found in the used pulse sequence "R1rho_1Hdec.m"

% following simulation parameters are automatically varried:

% SL freq., 1H dec freq., jumprate, 1H dec pulseduration

% for each you define a start, end and number of points

% an aequidistant list is created for each (jumprate in logarithmic scale)

% after setting all inputs, make sure that both scripts are in cur work dir

% then simply run "R1rho_1Hdec_input" without paranthesis in matlab console

% outputs in folder output/R1r1Hdec_timestamp:

% (i)

% one decay file per jumprate as e.g. decays_1_00e02 .txt and .mat

% in each the three other paramters are varried

% 1st collumn: timedomain.

% decays in following order: for each pulseduration-step, dec power step

% and irr power step

% permutation example:

% for each pulseduration(123), dec power(45) and irr power(78)

% file column structure: time 147 247 347 157 257 357 148 248 348 ...

% (ii)

% parameters are saved as log file in parameters.txt

% (iii)

% if you specified that the decays shall be fitted and plotted:

% exp_fit results: first column prefactor; second column Relaxation rate

% plots of decays and fits as .pdf and .fig files

% possible improvements:

% apply nonselective damping to all states -> thermal equilibrium

% CSA tensors

% three-site jumps

% multi-spin system

% grumble function improvements

% add a GUI for inputs

% skip redundant simulations (e.g. just 1Hdec changed without decoupling)

% fit errors

function R1rho_1Hdec_input()

%output directory and current time

time = datestr(now,'ddmmyyyy_HHMM');

dirname = sprintf('output/R1r1Hdec_%s', time);

if not(isfolder(dirname))

 mkdir(dirname);

end

% START OF USER INPUTS

26

fits_plots = 0; % shall the decays be fitted and plotted? 1=yes !!

fitting_skipped_rotors = 0; % inital rotor periods to skip for fits !!

% generate symmetric two site jump spin pair system !!

jumprate_list_user = []; % leave as "[]" if you want automatic list (below)

jumprate_min = 4.0; % minimum exchange process jump rate EXPONENT (2->100Hz)

jumprate_max = 4.0; % max exchange process jump rate EXPONENT

jumprate_steps = 1; % number of jumprates to simulate (logarithmic space)

% NOTE: automatic aequidistant list creation: e.g. jumprate_steps = 2 only

% uses min and max rates. jumprate_steps = 3 uses min, max, and mid

if size(jumprate_list_user,2)>0

 jumprate_list = jumprate_list_user;

 jumprate_steps = size(jumprate_list_user,2);

else

 jumprate_list = logspace(jumprate_min,jumprate_max,jumprate_steps);

end

%disp(jumprate_list);

% return;

jumpangle = 10; % two site jump angle in deg !!

inter_dist = 1.02; % internuclear distance in Angstrom !!

% build spin positions

pos_1 = inter_dist*sin(jumpangle*pi/180);

pos_2 = inter_dist*cos(jumpangle*pi/180);

sys.magnet=14.1; % static magn field (T), 14.1 T corresponds to 600 MHz !!

sys.isotopes={'15N','1H','15N','1H'}; % if you want to observe 15N !!

% sys.isotopes={'1H','13C','1H','13C'}; % if you want to observe 13C !!

% zeeman interaction !!

%inter.zeeman.eigs={[0 0 160],[0 0 0],[0 0 160],[0 0 0]};

%inter.zeeman.eigs={[0 0 0],[0 0 0],[0 0 0],[0 0 0]};

%inter.zeeman.euler={[0 0 0],[0 0 0],[0 -jumpangle*pi/180 0],[0 0 0]};

% euler angles [+-a b 0]

% Turn off dipolar coupling completely? -> Set cutoff below nuclei distance

% sys.tols.prox_cutoff = 0.1; % distance, in Angstroms

% beyond which dipolar interactions are ignored (default is 100)

% dipolar couplings are calculated from the coordinates

% spin positions [x,y,z] !!

inter.coordinates={[0.0 0.0 0.0]

 [0.0 0.0 inter_dist]

 [0.0 0.0 0.0]

 [0.0 -pos_1 pos_2]};

inter.chem.parts={[1 2],[3 4]}; % define parts of species

inter.chem.concs=[1.0 1.0]; % start populations !!

% Basis sets

bas.formalism='sphten-liouv';

bas.approximation='none';

% Algorithmic options

sys.disable={'trajlevel'};

sys.enable={'caching'}; % store propagators for later (repetitive pseq)

% 'gpu' if you have a CUDA ready GPU - first test with RTX 3090:

% considerable slowdown. Maybe parallel slowdown or floating point

27

% precision of the GPU is capped (better use TITAN RTX)

% loop over jumprate list

for jumprate_it=1:jumprate_steps

 % exchange rate matrix !!

 inter.chem.rates=jumprate_list(jumprate_it)*[-1,1;1,-1];

 % Spinach housekeeping

 spin_system=create(sys,inter);

 spin_system=basis(spin_system,bas);

 % PARAMETERS for pulse sequence R1rho.m

 % MAS !!

 parameters.rate=18000.0;

 parameters.axis=[1 1 1];

 parameters.max_rank=5; % 4 should be max needed for R1r !!

 % with rank 2 the relaxation RATE didnt change (further testing needed)

 % relevant spins

 parameters.spins={'1H','15N'}; % if you want to obs 15N !!

 % parameters.spins={'1H','13C'}; % if you want to obs 13C !!

 % rotating frame transformations

 parameters.rframes={{'1H',2},{'15N',2}}; % if you want to obs 15N !!

 % parameters.rframes={{'1H',2},{'13C',2}}; % if you want to obs 13C !!

 % powder average - 2 angles, 100 points, full sphere, repulsion !!

 parameters.grid='rep_2ang_200pts_sph';

 parameters.sum_up=1;

 % initial states

 parameters.rho0=state(spin_system,'Lz','15N','exact');

 % parameters.rho0=state(spin_system,'Lz','13C','exact');

 % observed states

 parameters.coil=state(spin_system,'L+','15N','exact');

 % parameters.coil=state(spin_system,'L+','13C','exact');

 %

 % Relevant operators

 Hp=operator(spin_system,'L+','1H');

 Np=operator(spin_system,'L+','15N');

 % Cp=operator(spin_system,'L+','13C');

 Hx=(Hp+Hp')/2; Hy=(Hp-Hp')/2i;

 Nx=(Np+Np')/2; Ny=(Np-Np')/2i;

 % Cx=(Cp+Cp')/2; Cy=(Cp-Cp')/2i;

 % excitation pulse operator (infinitely hard applied) !!

 parameters.exc_oper=Ny;

 % parameters.exc_oper=Cy;

 % cw spin lock pulse operator and power (soft) !!

 parameters.irr_oper=Nx;

 % parameters.irr_oper=Cx;

 parameters.irr_power_list_user = []; % leave as "[]" if you want automatic list (below)

 parameters.irr_power_min=4000;

 parameters.irr_power_max=16000;

 parameters.irr_power_npoints=7; % if ...npoints=1, only max is used

 % simultaneous 1H rotorsynched decoupling operator, power (soft) !!

 parameters.dec_oper=Hx;

28

 parameters.dec_power_list_user = []; % leave as "[]" if you want automatic list (below)

 parameters.dec_power_min=100000;

 parameters.dec_power_max=100000;

 parameters.dec_power_npoints=1; % if ...npoints=1, only max is used

 % number of 1H dec pulses per rotor

 parameters.pulses_per_rotor=1;

 % simulation precision, datapoints

 % dont do more than 100K simulation steps per rotor cycle (RAM)

 % Tested good timestep for 18kHz MAS over 10 rotor periods:

 % convergence for 100 pulse- & 100 tsteps per pulsestep

 % => should be smaller or equal: tstep<=5e-9

 % 5e-10 didnt improve evolution!

 % faster dynamics -> smaller timesteps needed. (us-ms motions are fine)

 % ROTORSYNCHRONIZATION

 % NUMBER OF ROTORPERIODS you want to simulate !!

 parameters.rotorperiods=400;

 % number of simulation pulse-steps per rotor period !!

 parameters.pulsesteps_per_rotor=128;

 % number of timesteps per pulsestep !!

 parameters.tsteps_per_pulsestep=1; % can be set to 1 if you wish

 % simulation timestep (calculated to be rotorsynched)

 parameters.timestep=1/parameters.rate/parameters.pulsesteps_per_rotor/...

 parameters.tsteps_per_pulsestep; % also being output to console

 fprintf('using simulation timestep: %.12f seconds\n',parameters.timestep);

 % resulting number of timesteps per rotor

 parameters.stepamount=parameters.pulsesteps_per_rotor*...

 parameters.tsteps_per_pulsestep;

 % resulting time domain

 parameters.timesum=parameters.timestep*parameters.rotorperiods*...

 parameters.pulsesteps_per_rotor*parameters.tsteps_per_pulsestep;

 % 1H dec pulsedurations of interest: !!

 % in number of simulation pulsesteps

 parameters.pulsedur_list_user = []; % leave as "[]" if you want automatic list (below)

 parameters.pulsedur_min=0; % 0: without decoupling

 parameters.pulsedur_max=(parameters.pulsesteps_per_rotor/...

 parameters.pulses_per_rotor); % this correponds to CW

 parameters.n_pulsedurations=1; % take care, that every entry is integer

 % n_pulsedurations=1 means only max is used (e.g. CW); =2 only min and max

 % saved data points per MAS rotor period: !!

 parameters.aq_per_rotor=8;

 % misc

 parameters.verbose=0; % avoid excessive console output

 % END OF USER INPUTS

 % translate SL power list

 if size(parameters.irr_power_list_user,2)>0

 parameters.irr_power_list = parameters.irr_power_list_user;

 parameters.irr_power_npoints = size(parameters.irr_power_list_user,2);

29

 else

 parameters.irr_power_list = linspace(parameters.irr_power_min,...

 parameters.irr_power_max,...

 parameters.irr_power_npoints);

 end

 % translate 1H decoupling power list

 if size(parameters.dec_power_list_user,2)>0

 parameters.dec_power_list = parameters.dec_power_list_user;

 parameters.dec_power_npoints = size(parameters.dec_power_list_user,2);

 else

 parameters.dec_power_list = linspace(parameters.dec_power_min,...

 parameters.dec_power_max,...

 parameters.dec_power_npoints);

 end

 % translate 1H decoupling pulse duration list, delays en passant

 if size(parameters.pulsedur_list_user,2)>0

 parameters.pulsedur_list = parameters.pulsedur_list_user;

 parameters.n_pulsedurations = size(parameters.pulsedur_list_user,2);

 else

 parameters.pulsedur_list = linspace(parameters.pulsedur_min,...

 parameters.pulsedur_max,...

 parameters.n_pulsedurations);

 end

 % PULSE SEQUENCE CALL

 % use Fokker-Planck single angle spinning

 % Liouvillian generation and passing to pulse sequence

 decay_mat_fin=singlerot(spin_system,@R1rho_1Hdec,parameters,'labframe');

 % output with time

 time_list=linspace(0,parameters.timesum,parameters.rotorperiods*parameters.aq_per_rotor);

 % SAVE DATA TO DISK

 % reform OUTPUT

 output = [time_list.' re-

shape(real(decay_mat_fin),[],parameters.n_pulsedurations*parameters.dec_power_npoints*parameters.irr_powe

r_npoints)];

 % format current jumprate as string for filenames

 % if you have very small jumprate steps: change '%0.2e' to e.g. '%0.5e'

 str_jumprate = sprintf('%0.2e',jumprate_list(jumprate_it));

 str_jumprate = strrep(str_jumprate,'.','_'); % _ is new comma

 str_jumprate = strrep(str_jumprate,'+',''); % if exponent positv: ommit

 % SAVE decays as matlab and txt outputs

 filename1 = sprintf('output/R1r1Hdec_%s/decays_%s.mat', time, str_jumprate);

 filename2 = sprintf('output/R1r1Hdec_%s/decays_%s.txt', time, str_jumprate);

 save(filename1,'output');

 save(filename2,'output','-ascii');

 fitting_skipped_points = fitting_skipped_rotors*parameters.aq_per_rotor+1;

 if fits_plots==1

 % single exponentional fits

 exp_func = @(paras,xdata)paras(1)*exp(-paras(2)*xdata); %fit function

 paras0 = [0.5,10]; % initial fitting parameters [amplitude,Relax. rate]

30

 paras_result = zeros(size(output,2)-1,2); % preallocation of mat size

 % fitting loop: least-squares method (Optimization Toolbox) + plots

 fig1 = figure('visible','off');

 hold on; % all decay plots in same figure (one file per jumprate)

 for output_it=1:(size(output,2)-1)

 paras_result(output_it,:) =

lsqcurvefit(exp_func,paras0,output(fitting_skipped_points:end,1),output(fitting_skipped_points:end,output_it+1)

);

 plot(output(:,1),output(:,output_it+1));

plot(output(fitting_skipped_points:end,1),exp_func(paras_result(output_it,:),output(fitting_skipped_points:end,1

)));

 end

 hold off;

 filename5 = sprintf('output/R1r1Hdec_%s/decays_plt_%s', time, str_jumprate);

 filename6 = sprintf('output/R1r1Hdec_%s/decays_fig_%s.pdf', time, str_jumprate);

 set(fig1, 'visible', 'on');

 saveas(fig1, filename5, 'fig');

 exportgraphics(fig1,filename6,'ContentType','vector')

 close(fig1)

 % save fitting parameters

 filename4 = sprintf('output/R1r1Hdec_%s/exp_fits_%s.txt', time, str_jumprate);

 save(filename4,'paras_result','-ascii');

 end

end

%write parameters to disk:

filename3 = sprintf('output/R1r1Hdec_%s/parameters.txt', time);

fileID = fopen(filename3, 'wt'); % Open and create file in text writing mode.

fprintf(fileID, ' ==\r\n');

fprintf(fileID, '|| PARAMETERS AND LOG ||\r\n');

fprintf(fileID, '||note: if you created explicit user lists,||\r\n');

fprintf(fileID, '||they will not be displayed here ||\r\n');

fprintf(fileID, ' ==\r\n\r\n');

fprintf(fileID, 'minimum used jumprate[Hz] =\t%f\r\n', jumprate_min);

fprintf(fileID, 'max jumprate[Hz] =\t%f\r\n', jumprate_max);

fprintf(fileID, 'number of jumprate steps =\t%f\r\n', jumprate_steps);

fprintf(fileID, 'jumpangle[deg] =\t%f\r\n', jumpangle);

fprintf(fileID, 'inter_dist[angstrom] =\t%f\r\n', inter_dist);

if isfield(inter,'coordinates') == 1

 fprintf(fileID, 'distance matrix [Angstrom] =\t%4f %4f %4f\r\n', cell2mat(inter.coordinates).');

end

if isfield(inter.zeeman,'eigs') == 1

 fprintf(fileID, 'CSA eigenvalues [ppm] =\t%4f %4f %4f\r\n', cell2mat(inter.zeeman.eigs).');

end

if isfield(inter.zeeman,'euler') == 1

 fprintf(fileID, 'CSA euler angles [radians] =\t%4f %4f %4f\r\n', cell2mat(inter.zeeman.euler).');

end

fprintf(fileID, 'max harmonic rank =\t%f\r\n', parameters.max_rank);

fprintf(fileID, 'MAS rate[Hz] =\t%f\r\n', parameters.rate);

fprintf(fileID, 'min SL[Hz] =\t%f\r\n', parameters.irr_power_min);

fprintf(fileID, 'max SL[Hz] =\t%f\r\n', parameters.irr_power_max);

fprintf(fileID, 'SL steps =\t%f\r\n', parameters.irr_power_npoints);

fprintf(fileID, 'min 1Hdec[Hz] =\t%f\r\n', parameters.dec_power_min);

fprintf(fileID, 'max 1Hdec[Hz] =\t%f\r\n', parameters.dec_power_max);

fprintf(fileID, '1Hdec steps =\t%f\r\n', parameters.dec_power_npoints);

fprintf(fileID, '1Hdec pulses per rotor =\t%f\r\n', parameters.pulses_per_rotor);

31

fprintf(fileID, 'minimum 1Hdec pulseduration (in pulsesteps per rotorperiod) =\t%f\r\n', parame-

ters.pulsedur_min);

fprintf(fileID, 'maximum 1Hdec pulseduration (in pulsesteps per rotorperiod) =\t%f\r\n', parame-

ters.pulsedur_max);

fprintf(fileID, 'number of 1Hdec pulse durations to simulate !use this wisely: each entry needs to be and inte-

ger!!! =\t%f\r\n', parameters.n_pulsedurations);

fprintf(fileID, 'number of rotorperiods =\t%f\r\n', parameters.rotorperiods);

fprintf(fileID, 'pulse simulation steps PER ROTORPERIOD =\t%f\r\n', parameters.pulsesteps_per_rotor);

fprintf(fileID, 'additional timesteps per pulsestep (above) =\t%f\r\n', parameters.tsteps_per_pulsestep);

fprintf(fileID, 'resulting simulation timestep[s] =\t%.12f\r\n', parameters.timestep);

fprintf(fileID, 'number of timesteps per rotorperiod =\t%f\r\n', parameters.stepamount);

fprintf(fileID, 'timedomain[s] =\t%.9f\r\n', parameters.timesum);

fprintf(fileID, 'aquisition points per rotor period =\t%f\r\n', parameters.aq_per_rotor);

fprintf(fileID, 'number of skipped inital rotor periods for fitting =\t%f\r\n\r\n', fitting_skipped_rotors);

% fprintf(fileID, '[] =\t%f\r\n',);

fclose(fileID);

%

end

32

File "R1rho_Hdec.m"

% Solid-State MAS NMR 15N/13C Relaxation

% in presence of an alternating magnetic cw field 15N/13C

% with simultaneous rotorsynchronized 1H irradiation

% Calculation time: input dependent (minutes up to days)

% jurackhannes@gmail.com

%

% written in MATLAB R2021a Update 2

% and Spinach version 2.6.5608 (June 2021)

%

% Reinforcement Learning Toolbox is not needed

% this is just the NMR pulse sequence

% specify following commands in input file:

%

% pulse sequence call Syntax:

% R1rho_...(spin_system,parameters,H,R,K)

%

% should be called using singlerot.m (MAS) context to obtain H, R, and K

% H - Hamiltonian matrix, received from context function

% R - relaxation superoperator, received from context function

% K - kinetics superoperator, received from context function

%

% SYSTEM and INTERACTION specifications:

% sys.magnet - primary magnet field must be specified in units of Tesla

% sys.isotopes - Specify the spin system composition by giving a list of isotope names

% sys.labels - Optionally, specify a label for each spin by giving a list of strings

%

% chemical shifts:

% inter.zeeman.eigs

% inter.zeeman.euler

% OR:

% inter.zeeman.matrix - Full chemical shift tensors (in ppm for nuclei) as matrices.

%

% dipolar interactions:

% inter.coordinates -

% OR: inter.coupling.eigs & inter.coupling.euler

% for dipolar interactions supplied as eigenvalues and Euler angles

% (make sure the eigenvalues sum up to zero)

% inter.pbc - Periodic boundary conditions may also be needed

%

% spinach accuracy:

% sys.disable={'trajlevel'}; - the internal heuristics in Spinach is optimised for very large spin systems. If your

system has fewer than five spins, there is no point running sophisticated trajectory-level state space analysis. In

that case, some performance may be gained by disabling it

% sys.tols.prox_cutoff - the distance beyond which dipolar couplings are ignored, default is 100 Angstrom

% sys.tols.inter_cutoff - the amplitude below which spin-spin interactions are ignored, default is 1e-10 rad/s

% sys.disable={'krylov'}; - To force the faster matrix exponential path

% sys.enable={'gpu','caching'}; - speed improvements on SSD or GPU

%

% sys.output='filename'; - output location

% sys.output='hush'; - output disabled

% fclose('all'); - at the end to close all files

%

% BASIS SET specifications: Spinach input must contain a specification of the formalism to be used (Hilbert or

Liouville space), a specification of the type of basis operators to be used (Pauli matrices or irreducible spherical

tensors), and a choice of which quantum states should be taken into consideration during the simulation process

% spin_system=create(sys,inter);

% spin_system=basis(spin_system,bas); - updates the spin_system data structure with formalism and basis set

information

% bas.formalism='sphten-liouv'; - Liouville space formalism

33

% bas.approximation - up to 6-12 spins to 'none' to request a complete basis set

% bas.connectivity='full_tensors'; - solid state NMR, DNP and many ESR systems a coupling is essentially ani-

sotropic and the interaction network must also count traceless interactions because they manifest directly.

% bas.projections=[-1 0 1] or bas.longitudinals={'15N','13C'}; or bas.zero_quantum={'15N','13C'}; - screen the

basis sets according to coherence order and only keep the user-specified coherences

%

% PARAMETERS:

% parameters.npoints - Number of points in each dimension of the output data array

% parameters.verbose - inside powder.m, singlerot.m and doublerot.m, where the console output is suppressed

unless the user specifically indicates that it shouldn't be by setting

% parameters.sweep - Sweep width in each dimension of the spectrum (Hz)

% parameters.dead_time - the system will be evolved for this time (seconds) before the signal acquisition begins

(look into aquire.m)

% -

% parameters.spins - Spins that are to be assigned to each instrument channel during the simulation

% parameters.rframes - numerical rotating frame transformation specification

% -

% parameters.rate - spinning rate for single rotation solid state NMR experiments

% parameters.axis - rotor axis for single rotation solid state NMR experiments

% parameters.max_rank - maximum harmonic rank to retain (15-85)

% parameters.grid - powder averaging grid

% parameters.ref_frame='rotor'; - Floquet approach

% -

% parameters.pulse_dur - duration of each pulse, a two-element vector, seconds

% parameters.pulse_amp - amplitude of each pulse, a two-element vector, rad/s

% -

% parameters.rho0 - initial condition, usually Lz

% parameters.coil - detection state, usually L+

% parameters.homodec_oper - operator to add to the Liouvillian at the detection stage (look into aquire.m)

% parameters.homodec_pwr - power coefficient for the operator, Hz (look into aquire.m)

%

% additional singlerot.m options:

% parameters.sum_up

% assumptions

%

% MOTIONAL MODEL EXAMPLE (two sites)

% sys.isotopes={'1H','15N','1H','15N'};

% inter.zeeman.scalar={0.0 0.0 0.0 0.0};

% inter.coordinates={[0 0 0]; [0 0 2];

% [0 0 0]; [0 2 0]};

% Chemical exchange

% inter.chem.parts={[1 2],[3 4]};

% inter.chem.rates=[-5000 +5000;

% +5000 -5000];

% inter.chem.concs=[1 1];

%

% Outputs:

% Relaxation decay matrix - decay as seen by the state parameters.coil

% for different 1H dec pulselengths, 1H dec power

% and SL powers

%

%

function decay_mat=R1rho_1Hdec(spin_system,parameters,H,R,K)

% preallocate decay_mat size to save time

% it holds all output decays

decay_mat=zeros(parameters.rotorperiods*parameters.aq_per_rotor,parameters.n_pulsedurations,...

 parameters.dec_power_npoints,parameters.irr_power_npoints);

% Check consistency

grumble(spin_system,parameters,H,R,K);

% Project the operators, to match matrix dimensions

parameters.exc_oper=kron(speye(parameters.spc_dim),parameters.exc_oper);

34

parameters.irr_oper=kron(speye(parameters.spc_dim),parameters.irr_oper);

parameters.dec_oper=kron(speye(parameters.spc_dim),parameters.dec_oper);

% Compose Liouvillian

L=H+1i*R+1i*K;

% Excitation pulse

rho=step(spin_system,parameters.exc_oper,parameters.rho0,pi/2);

%

% itteration over different parameters:

for irr_power_it=1:parameters.irr_power_npoints

 % add up L and SL irradiation

 L_irr=L+2*pi*parameters.irr_power_list(irr_power_it)*parameters.irr_oper;

 for dec_power_it=1:parameters.dec_power_npoints

 % add up L_irr and 1H decoupling

 L_dec=L_irr+2*pi*parameters.dec_power_list(dec_power_it)*parameters.dec_oper;

 %

 % needed simulation precision estimation; controlled via

 % pulsesteps_per_rotor and timesteps_per_pulsestep

 % disp(1/norm(L_dec));

 % disp(1/normest(L_dec));

 %

 for pulsedur_it=1:parameters.n_pulsedurations

 % find number of timesteps for the two evolution periods

 % CW or non-dec won't work at the moment!

 n_steps_dec=parameters.pulsedur_list(pulsedur_it)*parameters.tsteps_per_pulsestep; % correct???

 % integer size cannot exeed 16K here!

 n_steps_irr=uint32(((parameters.pulsesteps_per_rotor/parameters.pulses_per_rotor)-

parameters.pulsedur_list(pulsedur_it))*parameters.tsteps_per_pulsestep);

 %RUN WITHOUT 15N/13C decoupling:

 if n_steps_dec==0

 % preallocate rho_traj matrizes size to save time

 rho_traj_mat_irr=zeros(size(rho,1),n_steps_irr);

 % overwrite last trajectory vector (new sim start point)

 rho_traj_mat_irr(:,end) = rho;

 % PULSE SEQUENCE:

 for rotorperiods_it=1:parameters.rotorperiods

 coil_vec = zeros(1,n_steps_irr);

 for pulses_it=1:parameters.pulses_per_rotor

 % basic simulation CONCEPT

 % overwrite density matrix trajectory, saved matrix

 % start from last trajectroy vector rho_traj_mat_

 %

 %

 % Run pure 15N/13C SPIN LOCK

 rho_traj_mat_irr = evolu-

tion(spin_system,L_irr,[],rho_traj_mat_irr(:,end),parameters.timestep,n_steps_irr-1,'trajectory');

 % obtain obervable as "seen" from coil state

 % coil_vec will hold evolution of one rotor

 coil_vec(1,pulses_it*(n_steps_dec+n_steps_irr)+1-

(n_steps_dec+n_steps_irr):pulses_it*(n_steps_dec+n_steps_irr)) = parameters.coil'*rho_traj_mat_irr;

 end

 % AQUISITION

 % only save parameters.aq_per_rotor points every rotor

 decay_mat(rotorperiods_it*parameters.aq_per_rotor-

parame-

ters.aq_per_rotor+1:rotorperiods_it*parameters.aq_per_rotor,pulsedur_it,dec_power_it,irr_power_it)=coil_vec(1

,1:parameters.stepamount/parameters.aq_per_rotor:end);

 end

 %RUN in CW 15N/13C decoupling:

 elseif n_steps_irr==0

 % preallocate rho_traj matrizes size to save time

 rho_traj_mat_dec=zeros(size(rho,1),n_steps_dec);

35

 % overwrite last trajectory vector (new sim start point)

 rho_traj_mat_dec(:,end) = rho;

 % PULSE SEQUENCE:

 for rotorperiods_it=1:parameters.rotorperiods

 coil_vec = zeros(1,n_steps_dec);

 for pulses_it=1:parameters.pulses_per_rotor

 % Run 15N/13C SPIN LOCK + 1H cw decoupling

 rho_traj_mat_dec = evolu-

tion(spin_system,L_dec,[],rho_traj_mat_dec(:,end),parameters.timestep,n_steps_dec-1,'trajectory');

 % obtain obervable as "seen" from coil state

 % coil_vec will hold evolution of one rotor

 coil_vec(1,pulses_it*(n_steps_dec+n_steps_irr)+1-

(n_steps_dec+n_steps_irr):pulses_it*(n_steps_dec+n_steps_irr)) = parameters.coil'*rho_traj_mat_dec;

 end

 % AQUISITION

 % only save parameters.aq_per_rotor points every rotor

 decay_mat(rotorperiods_it*parameters.aq_per_rotor-

parame-

ters.aq_per_rotor+1:rotorperiods_it*parameters.aq_per_rotor,pulsedur_it,dec_power_it,irr_power_it)=coil_vec(1

,1:parameters.stepamount/parameters.aq_per_rotor:end);

 end

 %RUN in rotorsynch decoupling mode:

 else

 % preallocate rho_traj matrizes size to save time

 rho_traj_mat_dec=zeros(size(rho,1),n_steps_dec);

 rho_traj_mat_irr=zeros(size(rho,1),n_steps_irr);

 % overwrite last trajectory vector (new sim start point)

 % called in alternating mode

 rho_traj_mat_irr(:,end) = rho;

 % PULSE SEQUENCE:

 for rotorperiods_it=1:parameters.rotorperiods

 coil_vec = zeros(1,n_steps_dec+n_steps_irr);

 for pulses_it=1:parameters.pulses_per_rotor

 % Run 15N/13C SPIN LOCK + 1H decoupling with delays

 rho_traj_mat_dec = evolu-

tion(spin_system,L_dec,[],rho_traj_mat_irr(:,end),parameters.timestep,n_steps_dec-1,'trajectory');

 % Run pure 15N/13C SPIN LOCK

 rho_traj_mat_irr = evolu-

tion(spin_system,L_irr,[],rho_traj_mat_dec(:,end),parameters.timestep,n_steps_irr-1,'trajectory');

 % obtain obervable as "seen" from coil state

 % coil_vec will hold evolution of one rotor

 coil_vec(1,pulses_it*(n_steps_dec+n_steps_irr)+1-

(n_steps_dec+n_steps_irr):pulses_it*(n_steps_dec+n_steps_irr)) = [parame-

ters.coil'*rho_traj_mat_dec,parameters.coil'*rho_traj_mat_irr];

 end

 % AQUISITION

 % only save parameters.aq_per_rotor points every rotor

 decay_mat(rotorperiods_it*parameters.aq_per_rotor-

parame-

ters.aq_per_rotor+1:rotorperiods_it*parameters.aq_per_rotor,pulsedur_it,dec_power_it,irr_power_it)=coil_vec(1

,1:parameters.stepamount/parameters.aq_per_rotor:end);

 end

 end

 end

 end

end

end

% Consistency enforcement

function grumble(spin_system,parameters,H,R,K)

if (~isnumeric(H))||(~isnumeric(R))||(~isnumeric(K))||...

 (~ismatrix(H))||(~ismatrix(R))||(~ismatrix(K))

36

 error('H, R and K arguments must be matrices.');

end

if (~all(size(H)==size(R)))||(~all(size(R)==size(K)))

 error('H, R and K matrices must have the same dimension.');

end

if ~isfield(parameters,'spins')

 error('working spins should be specified in parameters.spins variable.');

end

if ~isfield(parameters,'rho0')

 error('initial state must be specified in parameters.rho0 variable.');

end

if ~isfield(parameters,'coil')

 error('detection state must be specified in parameters.coil variable.');

end

if (all(parameters.pulsedur_list==round(parameters.pulsedur_list)))~=1

 disp(parameters.pulsedur_list);

 error('all entries of parameters.pulsedur_list need to be natural numbers. It depends on parame-

ters.pulses_per_rotor, parameters.pulsesteps_per_rotor, parameters.pulsedur_min, parameters.pulsedur_max,

parameters.n_pulsedurations. This is needed for rotorsynchronization.');

end

end

