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1 Comparison of spin temperatures of the nuclear spins at maximum polariza-
tion

The spin temperatures at the end of build-up are shown for the different nuclei present in the sample in Figure 1. These
temperatures are identical, or almost so. For the 31P experiments, the maximal spin temperature was compared to the 1H
nuclei.
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Figure 1 The inverse spin temperaturs β at the end of build-up for different nuclei.

2 Spin temperature error estimation
The errors may be estimated by a standard uncertainty propagation:1

∆β =

√
∑

i

(
∂β

∂xi
∆xi

)2

, (1)

where ∆xi is the error estimation of the independent variable. In our case, these variables are the inverse temperature
b0, the hyperpolarized signal S and the thermal signal S0. Their errors were estimated in the following way:

• ∆b0 = ∆T/T 2
0 , where the temperature error was estimated to be ±0.1

• ∆S was estimated by integrating over the noise region with the same interval and then calculating std

• ∆S0 was estimated by fitting with bi-exponential function the repolarization experiments with other nuclei saturation

2.1 Spin-1/2 derivatives
The process of derivative calculation is quite straightforward, here we present the final result only.
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2.2 Spin-1 derivatives

Using the fact that ( f−1)′(x) = 1/ f ′[ f−1(x)], and the fact that:

B′(x) = 2sh
3x
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x
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coth
3x
2

])
, (2)

where sh means sinh and ch means cosh, one could get all the derivatives for spin-1:
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3 Pulse correction of the fitting procedure
To perform pulse correction, we have modified the differential equation solver of the scipy python package (function
odeint) to handle discrete events. Between pulses, the evolution is propagated by Provotorv’s equation using the python
odeint function. The pulse modifies the inverse temperature value according to:

β
′ = β cosθ , for 1H,31P

β
′ = β cosθ1 cosθ2, for 2H.

Two different pulse angles are used for 2H because the two-pulse echo sequence was used to detect the nuclei.
Additionally. the steady state may be affected by excessive pulsing. In our case, this effect was mostly significant in

the 31P repolarization experiments (see Figure 2(a)), where rather large excitation pulses (4◦) were used. This, however,
was not the case in depolarization experiments that were performed with small, 1◦, excitation angles. Indeed, in case of
too frequent pulse monitoring of the signal the spins reach a steady state instead of the thermal polarization. This is taken
into account through the following correction procedure. For pulse angle θ , time interval τ between pulses, and relaxation
time T towards thermal equilibrium, the signals for FIDs n and n+1 are related according to:

Sn+1 = Seq +(Sn cosθ −Seq)exp(−τ/T ) (3)

Therefore, in steady-state, one has:

S′ = Seq f , where f =
1− exp(−τ/T )

1− cosθ exp(−τ/T )
(4)

Thus, data can be corrected by simply multiplying them by f , with T = τp, the decay rate constant of 31P signal. The result
is shown in figure 2(b). Such corrections were also performed for deuterium data, where the cosine in Eq. 4 is substituted
by cosθ1 cosθ2 (two angles were used for small-angle quadrupolar spin-echo). It is worth noting that this strategy works
correvctly for heteronuclei that have decay rates equal to τX . This is not the case of 1H, but because only small angles
were used, and due to the fast relaxation rates, the steady state was not significantly affected.

The differential evolution algorithm previously used for finding the global minimum becomes too time-consuming
for this approach when using the modified native python function modified by ourselves, so that we used the following
two-step minimization strategy:

• find the best fit using a differential evolution algorithm without accounting for the excitation angle (this turned out
to provide best-fit parameters very close to the final values);

• the final parameter search was performed by the fast Levenberg-Marquardt algorithm, taking into account the pulses,
with parameters of the previous step as starting values.

We give here details about the experiments using a 60 mM H-TEMPOL concentration and 10 microlitres of additional
water. This case is illustrative of all other experiments, and a comparison between fits obtained with the previous and the
pulse-corrected models are shown in Figure 3 One can see that the corrected solver better predicts the behaviour almost
in the same fashion, were steady-state data correction accounts for smaller repolarization maxima in 2H case. In the case
of 1H, no change is observed. The parameters for the previous and present fitting procedures are shown in Table 1. It is
noteworthy that the parameter values obtained in both cases are almost identical, except for τD, which takes somewhat
larger values for the pulse-corrected model. This observation is common to all the performed experiments.
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(a) No steady-state correction (b) Steady-state correction

Figure 2 The result of fitting the 31P data for 60 mM TEMPOL sample (a) with pulse correction but without steady-state correction, (b)
with both pulse correction and without steady-state correction

Figure 3 The comparison of the fitted curves obtained by the fit using the standard Provotorov model("ord" solver and "ord" params) or
the pulse-corrected one ("corr" solver and "corr" params).

Table 1 The comparison of the obtained parameters of the Provotorov equations between a pulse-corrected and uncorrected fitting
protocols.

60 mM H-TEMPOL, 10 % v/v H2O

Method τH / s τu
H / s τD / s τNZ / s f u f χ2

R

no pulse correction 3.21 0.80 253 3.1 0.04 0.09 1.84
pulse corrected 3.26 0.66 276 3.2 0.04 0.08 1.74
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4 Three reservoir model fittings
4.0.1 Fitting results

The figures in this section show the fitting results of the buildup curves for the three-reservoir model described in the
article.
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H-TEMPOL D-TEMPOL50 mM TEMPOL

60 mM TEMPOL

70 mM TEMPOL

Figure 4 Fitting results of the cross-talk buildup curves for the three-reservoir model, for protonated and deutarated TEMPOL at 50, 60
and 70 mM and 1:4:5 H2O:D2O:glycerol-d8.
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H-TEMPOL D-TEMPOL80 mM TEMPOL

2.5 v/v % H2O 

25 v/v % H2O 

Figure 5 The fitting results for 3 reservoir model for cross-talk experiments for protonated and deutarated TEMPOL with the sample
composition 80 mM TEMPOL 1:4:5 H2O:D2O:glycerol-d8, as well as 60 mM TEMPOL 2.5:47.5:50 and 25:25:50 H2O:D2O:glycerol-d8
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4.0.2 Correlations between model parameters

The significant correlations for the three-reservoir model are presented in table 2. Representative examples of parameter

Table 2 The significant correlation for the three reservoirs model

H-TEMPOL

CTEMPOL, mM Significant correlations ( > 0.4)

50 c(τNZ , f ) = 0.94, c(τH , f ) = 0.70, c(τH , τNZ) = 0.56
60 c(τNZ , f ) = 0.94, c(τH , f ) = 0.57, c(τH , τNZ) = 0.42
70 c(τNZ , f ) = 0.93, c(τH , f ) = 0.56, c(τH , τNZ) = 0.44
80 c(τNZ , f ) = 0.84, c(τH , f ) = 0.57

H2O v/v, %
2.5 None
10 c(τNZ , f ) = 0.94, c(τH , f ) = 0.57, c(τH , τNZ) = 0.42
25 c(τNZ , f ) = 0.95, c(τH , f ) = 0.42

D-TEMPOL

CTEMPOL, mM Significant correlations ( > 0.4)

50 c(τNZ , f ) = 0.85, c(τH , f ) = 0.65
60 c(τNZ , f ) = 0.86, c(τH , f ) = 0.71
70 c(τNZ , f ) = 0.87, c(τH , f ) = 0.80, c(τH , τNZ) = 0.49
80 c(τNZ , f ) = 0.92, c(τH , f ) = 0.83, c(τH , τNZ) = 0.68

H2O v/v, %
2.5 None
10 c(τNZ , f ) = 0.86, c(τH , f ) = 0.71
25 c(τNZ , f ) = 0.95, c(τD, τNZ) = -0.84, c(τD, f ) = -0.43

correlation diagrams for 50 and 60 mM TEMPOL (protonated and deuterated) are shown in Figure 6. All diagrams may
be found on the github page.2 Mind the change of notations on the graph axes: τ1 → τH , τ2 → τD, τnz → τNZ , and f1
corresponds to f .
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H-TEMPOL D-TEMPOL50 mM TEMPOL

60 mM TEMPOL

Figure 6 Cross-talk experiments with a 3-reservoir model for protonated and deuterated TEMPOL with samples containing 50 and 60 mM
TEMPOL, 1:4:5 by volume of H2O:D2O:glycerol-d8.
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5 Four reservoir model fittings
Figures in this section correspond to the four-reservoir model described in the article.

H-TEMPOL D-TEMPOL50 mM TEMPOL

60 mM TEMPOL

70 mM TEMPOL

Figure 7 The fitting results for 4 reservoir model for cross-talk experiments for protonated and deutarated TEMPOL with the sample
composition 50, 60 and 70 mM TEMPOL, 1:4:5 H2O:D2O:glycerol-d8.
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H-TEMPOL D-TEMPOL80 mM TEMPOL

2.5 v/v % H2O 

25 v/v % H2O 

Figure 8 Fits for cross-talk experiments with a 3-reservoir model for protonated and deutarated TEMPOL with samples containing 80
mM TEMPOL and 1:4:5 by volume of H2O:D2O:glycerol-d8, as well as 60 mM TEMPOL and 2.5:47.5:50 and 25:25:50 by volume of
H2O:D2O:glycerol-d8
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5.0.1 Correlations

The most significant correlation graphs for the four-reservoir model are presented in table 3. Correlation diagrams for 60

Table 3 The significant correlation for the three reservoirs model

H-TEMPOL

CTEMPOL, mM Significant correlations ( > 0.7)

50 c(τNZ , f ) = 0.97, c(τu
H , f u) =0.85, c(τNZ , f u) = -0.82, c( f , f u) = -0.77

60 c(τNZ , f ) = 0.98, c(τu
H , f u) = 0.85, c(τNZ , f u) = -0.82, c( f , f u) = -0.83

70 c(τNZ , f ) = 0.95, c(τNZ , f u) = -0.84, c( f , f u) = -0.76, c(τu
H , f u) = 0.74

80 c(τNZ , f ) = 0.95, c(τNZ , f u) = -0.91, c( f , f u) = -0.83, c(τu
H , f u) =0.75, c(τH , f u) = 0.74

H2O v/v, %
2.5 c(τNZ , f ) = 0.98, c(τNZ , f u) = -0.94, c(τu

H , f u) =0.93, c( f , f u) = -0.92, c(τH , f u) = 0.91, c(τu
H , τNZ) =

-0.88, c(τu
H , f ) = -0.82, c(τH , τNZ) = -0.81, c( f , τH) = -0.82, c(τu

H , τH) = 0.74
10 c(τNZ , f ) = 0.98, c(τu

H , f u) = 0.85, c(τNZ , f u) = -0.82, c( f , f u) = -0.83
25 c(τNZ , f ) = 0.98, c(τNZ , f u) = -0.97, c( f , f u) = -0.95, c(τu

H , f u) =0.93, c(τH , f u) = 0.88, c(τu
H , τNZ) =

-0.87, c(τu
H , f ) = -0.85, c(τH , τNZ) = -0.85, c( f , τH) = -0.83, c(τu

H , τH) = 0.73

D-TEMPOL

CTEMPOL, mM Significant correlations ( > 0.7)

50 c(τNZ , f ) = 0.99, c(τu
H , f u) = 0.94, c(τNZ , f u) = -0.86, c( f , f u) = -0.84, c(τu

H , τNZ) = -0.75
60 c(τNZ , f ) = 0.98, c(τu

H , f u) = 0.90, c(τNZ , f u) = -0.86, c( f , f u) = -0.85, c(τu
H , τNZ) = -0.74

70 c(τNZ , f ) = 0.98, c(τNZ , f u) = -0.90, c(τu
H , f u) = 0.90, c( f , f u) = -0.89, c(τu

H , τNZ) = -0.77, c(τu
H , f ) =

-0.7
80 c(τNZ , f ) = 0.98, c(τNZ , f u) = -0.91, c( f , f u) = -0.87, c(τu

H , f u) = 0.84, c(τu
H , τNZ) = -0.73

H2O v/v, %
2.5 c(τNZ , f ) = 0.99, c(τu

H , f u) = 0.74, c(τu
H , τNZ) = -0.73, c(τNZ , f u) = -0.72, c( f , f u) = -0.71, c(τu

H , f ) =
-0.7

10 c(τNZ , f ) = 0.98, c(τu
H , f u) = 0.90, c(τNZ , f u) = -0.86, c( f , f u) = -0.85, c(τu

H , τNZ) = -0.74
25 c(τNZ , f ) = 0.99, c(τNZ , f u) = -0.89, c( f , f u) = -0.87

mM TEMPOL (protonated and deuterated) are shown in Figure 9. All diagrams may be found on the github page.2 Mind
the change of notations: τ1 → τH , τ2 → τD, τnz → τNZ , and f1 corresponds to f .
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Figure 9 The correlation diagram for 4 reservoir model for cross-talk experiments for protonated TEMPOL with the sample composition
of 60 mM H-TEMPOL, 1:4:5 H2O:D2O:glycerol-d8.
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60 mM D-TEMPOL

τ D

Figure 10 Cross-talk experiments with a 4-reservoir model for deuterated TEMPOL with a sample containing 60 mM D-TEMPOL, 1:4:5
by volume H2O:D2O:glycerol-d8.
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6 Simulation of the size of the hidden reservoir
The simulation was performed as in ref.3 by counting the fractions of spins having greater paramagnetic shift than a given
value. The assumption is that the shift experienced by a single proton due to the paramagnetic shift originating from
several electrons adds up. So, the paramagnetic shift experienced by a proton at position r⃗ j is calculated as:

∆ωpara(⃗r j) =
µ0

4π

h̄γeγn

4

N

∑
k=1

1
|⃗r j − r⃗k|3

(
1−3

(
r jz − rkz

|⃗r j − r⃗k|

)2
)

(5)

Then, all the nuclei that have shifts larger than some threshold |∆ωpara| < ωn may be considered hidden. For example,
this threshold may be considered as the saturation bandwidth of the pulse. It may work the other way around: for a
given fraction of hidden spins one can extract the respective frequency, and then the radius. In our work, to estimate the
radius, one considers the frequency shift to be on the order of RMS of the Larmor frequency shift corresponding to a single
electro-nuclear spin-spin interaction:

∆ωRMS =
1

2
√

5
µ0

4π

h̄γeγn

r3 (6)

To simulate the abovementioned, one computed the position of randomly distributed electrons in the cube of 40 nm
with the number of electrons corresponding to the respective concentration. A random distribution of 1000 nuclear spins
was computed (5 nm widths on the edges of the box are excluded). The paramagnetic shift and the PRE are computed
for each nucleus by summing the contribution of all electrons, as detailed above, and repeated for 35 random electron
configurations. The resulting curves are shown in Figure 11

Figure 11 Computed hidden fraction due to the paramagnetic shift as a function of the nutation frequency of the pulse using the average
of 35 electron configurations. The vertical line corresponds to 17 kHz saturation bandwidth, which was used in the current work.
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7 X nucleus experimental data fitting
Fitting of the 31P cross-talk experiments was performed for the three-reservoir model as described in the main text, with
the addition of the 31P inverse temperature equation. The parameters cNZ,H,D and τNZ,H,D were taken from the fits of
the samples without 31P nuclei, and only the τX == τP parameter was fitted. This was justified by the fact that the heat
capacity of 31P is much smaller than 1,2H and should not change the parameters significantly. For example, for the sample
composition presented here (50, 60, 70, 80 mM H-TEMPOL, 0.5 M K2HPO4, 1:4:5 H2O:D2O:glycerol-d8), cP/cH,D ≈ 100.
The resulting fitted curves are shown in Figure12. The obtained τP values are 1503±4,1120±2,889±6,604±5 for 50, 60,
70, 80 mM H-TEMPOL concentrations respectively.

50 mM TEMPOL 60 mM TEMPOL

70 mM TEMPOL 80 mM TEMPOL

Figure 12 The fitting results for the 3 reservoir model for cross-talk experiments on the P nuclei only. The sample composition was 50,
60, 70, 80 mM H-TEMPOL, 0.5 M K2HPO4, 1:4:5 H2O:D2O:glycerol-d8.
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8 Arbitrary angle spin-echo sequence for quadrupolar interaction refocusing
in case of spin-1 calculated using SpinDynamica package
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Quadrupolar spin echo for a small 
pulse angles at the low temperature 
approximation

In this notebook I would like to

see the form of the density matrix for D in the low -

temperature approximation when the excitation and refocusing angle are small.

The density matrix for D may be written as :

ρeq(x) = a(x) E +
1

2
B(x) Iz + P(x) Iz

2


where x = ω0 / kT, and the coefficients are :

a(x) =
Sinh(x / 2)

Sinh(3 x / 2)
, B(x) =

Sinh(x) Sinh(x / 2)

Sinh(3 x / 2)
, P(x) = tanh(x / 2)

The Hamiltonian should be the quadrupolar one and it equals to :

HQ = ωQ
1
6
3 Iz

2 - 2 E

The pulse sequence should be something like :

τ -- β1 -- τ -- β2

Also, it seems there is some kind of

phase cycling sequence. I can also try to check it

Initialization
In[1]:= Needs["SpinDynamica`"]

SpinDynamica version 3.3.1 loaded

SetUserLevel : The user level is being initialized to 2. The user level may be set to an integer between 1 and 3 by using

SetUserLevel[level]. Low user levels provide strong syntax trapping at the expense of slow execution for some routines.

High user levels relax the syntax trapping in order to provide better execution speeds.

SetUserLevel : The user level has been set to 2.

SetUserLevel : Additional definitions have been given to the following symbols:

{Dot, Exp, Expand, Plus, Power, Simplify, Times, WignerD}



Set-up
In[2]:= SetSpinSystem[{{1, 1}}]

SetSpinSystem: the spin system has been set to {{1, 1}}

SetBasis : the state basis has been set to ZeemanBasis[{{1, 1}}, BasisLabels → Automatic].

Initial density matrix and helper functions
For future use, we will consider two cases of density matrix (high-temp and low-temp) separately.

The high-temp will be:

In[3]:= ρhighT =
1

3
opI["z"];

And the low-temp will be:

In[4]:= a[x_] := Sinhx  2  Sinh3 x  2;

B[x_] := Sinh[x] Sinhx  2  Sinh3 x  2;

P[x_] := Tanhx  2;

In[7]:= ρlowT = B[x] * opI["z"] + P[x] opI["z"].opI["z"];

One transforms into the other when the temp -> inf :
(here I don’t account for the identity matrix)

In[8]:= Series[ρlowT, {x, 0, 1}] // Normal  x

Out[8]=
I1 z

3

So, everything good in this regard.

Quadrupolar Hamiltonian
In[9]:= HQ =

ωQ

6
3 opI["z"].opI["z"] - 2 UnityOperator[]

Out[9]=
1

6
ωQ 3 (I1 z•I1 z) - 2 

Operators to express

The rotation superoperator

We will use two different rotation operators to see the effect of the first and the second excitation 
pulse.

In[10]:= R[i_, a_] := RotationSuperoperator[1, {βi, a}];

2     lowT_deuterium_small_flips_v2.nb



See if we rotate

In[11]:= R[1, "x"]@ρlowT

Out[11]= Csch
3 x

2
 Sinh

x

2
 Sinh[x] R1 x(β1)•I1 z•R1 x(-β1) + (R1 x(β1)•I1 z•I1 z•R1 x(-β1)) Tanh

x

2


The quadrupolar superoperator

Making the super operator for propagation under the quadrupolar evolution

First, the commutator superoperator that induces the evolution.

In[12]:= CS = CommutationSuperoperator[HQ]

Out[12]= CommutationSuperoperator
1

6
ωQ 3 (I1 z•I1 z) - 2 

Then, let’s constract the final propogator 

In[13]:= U1 = Exp[-I t1 CS]

Out[13]= ⅇ
CommutationSuperoperator-

1

6
ⅈ t1 ωQ (3 (I1 z•I1 z)-2 )

The second unitary operator for the second pulse

In[14]:= U2 = Exp[-I t2 CS]

Out[14]= ⅇ
CommutationSuperoperator-

1

6
ⅈ t2 ωQ (3 (I1 z•I1 z)-2 )

Coherent filtration superoperator

In[15]:= P = CoherenceOrderFiltrationSuperoperator[-1]

Out[15]= CoherenceOrderFiltrationSuperoperator[{{1}, {-1}}]

Small pulse angle approximation

Here I introduce the function to series the final expressions for a density matrix

In[16]:= Ser[i_, x_] := Series[#, {βi, 0, x}] // Normal &

In[17]:= Ser[1, 3]

Out[17]= Normal[Series[#1, {β1, 0, 3}]] &

Final echo sequence

So, finally, let’s define the final small angle spin echo sequence. The problem is I am not sure about 
the phases, so we will figure them out in the process:

In[18]:= SESeq [phase1_, phase2_] := P@U1@R[2, phase2]@U1@R[1, phase1]@# &

Cleaning from ωQ terms:

To figure out if the sequence was successful or not, we should filter out all the terms in the resulted 
density matrix that doesn’t depend on the ωQ. To do so, we are going to use the following magic:

lowT_deuterium_small_flips_v2.nb     3



In[19]:= QFilter = Select# // Expand, FreeQ[#, ωQ] & &

Out[19]= Select[Expand[#1], FreeQ[#1, ωQ] &] &

In[20]:= QSer[x_] := FourierCoefficient#, t1 ωQ  2, x // Normal &

Some operators addition:

In[21]:= InPhase = opI["-"]

AntiPhase = opI["-"].opI["z"] + opI["z"].opI["-"]

Out[21]= I1
-

Out[22]= I1
-•I1 z + I1 z•I1

-

High temperature density matrix
Let’s check the resulted density matrix under the usual excitation:

In[23]:= P@R[1, "x"]@ρhighT

SetOperatorBasis : the operator basis has been set to ShiftAndZOperatorBasis[{{1, 1}}, Sorted → CoherenceOrder].

Out[23]= -
1

6
ⅈ I1

- Sin[β1]

And now let’s see what will happen under SESeq:

In[24]:= ResHighT = SESeq["x", "y"]@ρhighT // Simplify

Out[24]=
1

12
ⅇ-ⅈ t1 ωQ -1 + ⅇⅈ t1 ωQ (I1

-•I1 z + I1 z•I1
-)

-ⅈ 1 + ⅇⅈ t1 ωQ Cos[β2]
2 Sin[β1] + ⅇ

1

2
ⅈ t1 ωQ Cos[β1] Sin[β2] +

I1
- -ⅈ ⅇ-ⅈ t1 ωQ 1 + ⅇ2 ⅈ t1 ωQ Cos[β2]

2 Sin[β1] +

Sin[β2] ⅇ
-
1

2
ⅈ t1 ωQ

1 + ⅇⅈ t1 ωQ Cos[β1] - 2 ⅈ Sin[β1] Sin[β2]

We should get the refocused matrix when the pulses are 90 degree:

In[25]:= ResHighT /. β2 → β1 /. β1 → π  2

Out[25]= -
1

6
ⅈ I1

-

Now let’s do some magic to see what terms are left after small angle excitation, and this terms 
should not depend on ωQ:

In[26]:= QFilter@ResHighT

Out[26]= -
1

6
ⅈ I1

- Sin[β1] Sin[β2]
2

So, the sequence work in the low-temperature regime

Low temperature density matrix
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Let’s repeat the same procedures for the low-temp density matrix.
After one arbitrary angle excitation pulse:

In[27]:= P@R[1, "x"]@ρlowT

Out[27]= -
1

2
ⅈ Csch

3 x

2
 I1

- Sin[β1] Sinh
x

2
 Sinh[x] -

1

4
ⅈ Csch

3 x

2
 (I1

-•I1 z + I1 z•I1
-) Sin[2 β1] Sinh

x

2
 Sinh[x] Tanh

x

2


In the small angle approximation:

In[28]:= Ser[1, 1]@P@R[1, "x"]@ρlowT

Out[28]= -
1

2
ⅈ β1 Csch

3 x

2
 I1

- Sinh
x

2
 Sinh[x] + Csch

3 x

2
 (I1

-•I1 z) Sinh
x

2
 Sinh[x] Tanh

x

2
 +

Csch
3 x

2
 (I1 z•I1

-) Sinh
x

2
 Sinh[x] Tanh

x

2


Let’s see in-phase contribution:

In[29]:= OperatorAmplitude[P@R[1, "x"]@ρlowT → InPhase] // ExpToTrig // Simplify

Out[29]= -
1

2
ⅈ Csch

3 x

2
 Sin[β1] Sinh

x

2
 Sinh[x]

And anti-phase contribution:

In[30]:= OperatorAmplitude[P@R[1, "x"]@ρlowT → AntiPhase] // ExpToTrig // Simplify

Out[30]= -
1

2
ⅈ Csch

3 x

2
 Sin[2 β1] Sinh

x

2

3

This sequence is still quite hard to interpret.

Let’s see what we would get after the spin-echo sequence, but we will calculate it for all possible 
phases:

In[32]:= Phases = {"x", "y", "-x", "-y"}

Out[32]= {x, y, -x, -y}

In[34]:= For[i = 1, i < 5, i++,

For[j = 1, j < 5, j++,

l1 = Phases[[i]];

l2 = Phases[[j]];

ResLowT[l1, l2] = SESeq[l1, l2]@ρlowT

];

];

Let’s see the {x, x} contribution:

In[37]:= QFilter@OperatorAmplitude[ResLowT["x", "x"] → InPhase] // Simplify

Out[37]= 0

In[38]:= QFilter@OperatorAmplitude[ResLowT ["x", "x"] → AntiPhase] // Simplify

Out[38]=
1

2
ⅈ Csch

3 x

2
 Sin[2 β1] Sin[β2]

2 Sinh
x

2

3

So, in this case we account only for AntiPhase part. 
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Now, let’s see the difference if we use {x,y} contribution:

In[39]:= QFilter@OperatorAmplitude[ResLowT["x", "y"] → InPhase] // Simplify

Out[39]= -
1

2
ⅈ Csch

3 x

2
 Sin[β1] Sin[β2]

2 Sinh
x

2
 Sinh[x]

In[40]:= QFilter@OperatorAmplitude[ResLowT ["x", "y"] → AntiPhase] // Simplify

Out[40]= 0

Here, contrary, only y contribution is survived.

Now, let’s see what the phased cycling proposed by Diego (half of it, because there is no point to 
use the whole sequence)

In[42]:= DiegoCycle = QFilter@-ResLowT["x", "x"] + ResLowT["x", "y"] 

Out[42]= -
1

2
ⅈ Csch

3 x

2
 I1

- Sin[β1] Sin[β2]
2 Sinh

x

2
 Sinh[x] -

1

4
ⅈ Csch

3 x

2
 (I1

-•I1 z) Sin[2 β1] Sin[β2]
2 Sinh

x

2
 Sinh[x] Tanh

x

2
 -

1

4
ⅈ Csch

3 x

2
 (I1 z•I1

-) Sin[2 β1] Sin[β2]
2 Sinh

x

2
 Sinh[x] Tanh

x

2


In[43]:= OperatorAmplitude[DiegoCycle → InPhase]

Out[43]= -
1

2
ⅈ Csch

3 x

2
 Sin[β1] Sin[β2]

2 Sinh
x

2
 Sinh[x]

In[44]:= OperatorAmplitude[DiegoCycle → AntiPhase]

Out[44]= -
1

2
ⅈ Csch

3 x

2
 Sin[2 β1] Sin[β2]

2 Sinh
x

2

3

So, in this case we should see both inphase and antiphase contributions.
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