Supporting Information

In-situ and real-time vibrational spectroscopic characterizations of the photodegradation of nitrite in the presence of methanediol

Chiao-Mi Cheng,¹ Cheng-Zong Lu,¹ Chun-Yao Hou,¹ Yuan-Jyun Jhao,¹ Yi-Fen Lai,² I-Chia Chen,¹ Yi-Hsueh Chuang,² and Li-Kang Chu^{1,*}

¹ Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan 300044

² Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 300093

Corresponding Author

*To whom correspondence should be addressed. Phone: 886-3-5715131 ext. 33396. Fax: 886-3-5711082. E-mail: lkchu@mx.nthu.edu.tw.

Table of contents

Supplementary figures

Figure S1. Triplicate experiments of the time-evolved difference infrared spectra of NaNO₂ aqueous solution in the presence of $CH_2(OH)_2$ at different concentrations upon continuous 365-nm photoexcitation.

Figure S2. Stack and contour plots of the time-evolved difference infrared spectra of the aqueous mixtures of NaNO₂ and $CH_2(OH)_2$ upon continuous 365-nm photoexcitation at high irradiation power.

Figure S3. Triplicate experiments of the time-evolved Raman spectra of the mixture containing NaNO₂ and $CH_2(OH)_2$ upon continuous 365-nm photoexcitation.

Figure S4. The original data of ion chromatographic plots for the mixture containing NaNO₂ and $CH_2(OH)_2$ upon 365-nm photoexcitation at different time slots.

Figure S5. Chromatograms of the vapor in the headspace of the $NaNO_2/CH_2(OH)_2$ aqueous mixture upon 365-nm excitation, 10% N₂O in N₂, and pure CO₂ obtained from the gas chromatography.

Supplementary tables

Table S1. The optimized molecular structures of relevant species in water.

Table S2. The predicted Gibbs free energies of relevant species in water.

Table S3. The predicted Gibbs free energies of the relevant reactions in water.

Figure S1. (a) Triplicate experiments of the time-evolved difference infrared spectra of 99 mM NaNO₂ aqueous solution in the presence of $CH_2(OH)_2$ at concentrations of 0, 17, and 67 mM upon continuous 365-nm photoexcitation (167 ± 9 mJ cm⁻²). (b) The corresponding averaged spectra. The results of the mixture of 99 mM NaNO₂ and 67 mM $CH_2(OH)_2$ were replotted as (i) stack and (ii) contour plots in **Figure 4a**, respectively.

Figure S2. The contour plots of the triplicate results of the time-evolved difference infrared spectra upon continuous 365-nm photoexcitation $(473 \pm 3 \text{ mJ cm}^{-2})$ of the aqueous mixtures of 99 mM NaNO₂ and 67 mM CH₂(OH)₂.

Figure S3. (a) Triplicate experiments of the time-evolved Raman spectra of the mixture containing 99 mM of NaNO₂ and 67 mM of CH₂(OH)₂ upon continuous 365-nm photoexcitation at 195 ± 11 mJ cm⁻². The corresponding time-resolved difference Raman spectra with respect to the unphotolyzed samples shown as (b) stack plot and (c) contour plot. The averaged spectra on (b) and (c) are shown in frames i and ii of **Figure 4c**, respectively.

Figure S4. The original data of ion chromatographic plots for the mixture containing 99 mM NaNO₂ and 67 mM CH₂(OH)₂ upon 365-nm excitation ($867 \pm 13 \text{ mJ cm}^{-2}$) at different time slots: 100 s, 3000 s, and 10800 s. The thickened lines and scales of the frames are shown in **Figure 5**.

Figure S5. Chromatograms of (a) the vapor in the headspace of the mixture containing $NaNO_2 / CH_2(OH)_2 = 98.9 \text{ mM} / 66.7 \text{ mM}$ upon 365-nm excitation for 3.5 hours, (b) 10 % N₂O diluted in N₂, and (c) pure CO₂ obtained from the gas chromatography.

Table S1. The optimized molecular structures of relevant species in water using the B3LYP density functional theory method with basis sets of aug-cc-pVTZ and C-PCM to account for the solvent effect.

Molecule	Molecule Structure	Cartesian coordinate			
		Atom	Х	Y	Z
NO		N	0.0000000	0.0000000	-0.6105960
		0	0.0000000	0.0000000	0.5342720
		Atom	Х	Y	Z
NO ⁻		N	0.0000000	0.0000000	-0.6632440
		0	0.0000000	0.0000000	0.5803380
		Atom	Х	Y	Z
NO		N	0.0000000	0.0000000	0.3208450
NO ₂		0	0.0000000	1.0977090	-0.1403700
		0	0.0000000	-1.0977090	-0.1403700
		Atom	Х	Y	Z
NO		N	0.0000000	0.0000000	-0.0741330
1120		N	0.0000000	0.0000000	-1.1937770
		0	0.0000000	0.0000000	1.1094210
		Atom	Х	Y	Z
		N	0.0000000	0.0000000	0.4594880
		0	0.0000000	1.0661320	-0.2010260
		0	0.0000000	-1.0661320	-0.2010260

			X	Y	Z
c-HONO		N	0.0000000	0.5423420	0.0000000
		0	1.0864950	0.0845170	0.0000000
		0	-1.0129460	-0.3987760	0.0000000
		Н	-0.5883930	-1.2823250	0.0000000
		Atom	Х	Y	Z
t-HONO	N	-0.1673210	0.4848420	0.0000000	
		0	-1.1007490	-0.2213050	0.0000000
		0	1.0319030	-0.2562360	0.0000000
		Н	1.7220220	0.4264430	-0.0000010
		Atom	Х	Y	Z
	—	N	0.0000000	0.0000000	0.0001960
NO ₃ ⁻		0	0.0000000	1.2557760	-0.0000570
		0	-1.0875340	-0.6278880	-0.0000570
		0	1.0875340	-0.6278880	-0.0000570
		Atom	Х	Y	Z
		N	0.0000000	0.6431000	0.0000000
N-O-		0	1.2033870	0.6627810	0.0000000
11203		0	-0.7787640	1.5619780	0.0000000
		N	-0.6995770	-1.1205810	0.0000000
		0	0.1875060	-1.8069630	0.0000000

		Atom	Х	Y	Z
N ₂ O ₄		N	0.8958810	-0.0000520	0.0000170
		N	-0.8960370	0.0000200	-0.0000200
		0	1.3535260	1.0932590	0.0001230
		0	1.3537440	-1.0931350	-0.0001320
		0	-1.3535700	1.0931590	-0.0001220
		0	-1.3535650	-1.0932570	0.0001340
и +		Atom	Х	Y	Z
11		Н	0.0000000	0.0000000	0.0000000
		Atom	Х	Y	Z
ЧО		0	0.0552890	-0.6077940	0.0000000
HO ₂		Н	-0.8846240	-0.8770750	0.0000000
	•	0	0.0552890	0.7174290	0.0000000
		Atom	Х	Y	Z
UNIO		N	0.0622290	0.5789260	0.0000000
ninO		Н	-0.9334410	0.9239620	0.0000000
		0	0.0622290	-0.6220550	0.0000000
		Atom	X	Y	Z
но		0	0.0000000	0.0000000	0.1178240
1120		Н	0.0000000	0.7619710	-0.4712970
	• •	Н	0.0000000	-0.7619710	-0.4712970

		-	1	r	1
		Atom	Х	Y	Z
60		C	0.0000000	0.0000000	0.0000000
		0	0.0000000	0.0000000	1.1601680
		0	0.0000000	0.0000000	-1.1601680
		Atom	X	Y	Z
CO-		С	0.0000000	0.0000000	0.3376020
CO ₂		0	0.0000000	1.1426640	-0.1266010
		0	0.0000000	-1.1426640	-0.1266010
		Atom	Х	Y	Z
		С	0.0000000	0.3318110	0.0000000
HCOO ⁻		Н	-0.0012470	1.4503280	0.0000000
		0	1.1286870	-0.2142450	0.0000000
		0	-1.1285310	-0.2159050	0.0000000
		Atom	Х	Y	Z
		С	0.0000000	0.0000000	-0.0009160
CO ₃ ^{2–}		0	0.0000000	0.0000000	1.2978880
		0	0.0000000	1.1247580	-0.6486010
		0	0.0000000	-1.1247580	-0.6486010
		Atom	Х	Y	Z
		С	0.1251060	0.3682730	-0.0001010
		H	0.0360060	1.4626100	0.0000980
<i>c</i> -ncoon		0	1.1715200	-0.2208140	0.0000470
		0	-1.0469060	-0.2814390	-0.0000230
		Н	-1.7835620	0.3457800	0.0003160

		Atom	Х	Y	Z
		С	0.0000000	0.4201010	0.0000000
<i>t</i> -нсоон	I	Н	-0.3642030	1.4519880	0.0000000
		0	1.1615580	0.1033390	0.0000000
	0	-1.0297680	-0.4321000	0.0000000	
	•	Н	-0.6901170	-1.3425050	0.0000000
		Atom	Х	Y	Z
сн2он		С	0.6853260	0.0272060	-0.0555160
		Н	1.2406360	-0.8829180	0.1032800
		Н	1.1098240	1.0016350	0.1359890
		0	-0.6700080	-0.1269080	0.0152240
		Н	-1.1023480	0.7333100	-0.0279620
		Atom	Х	Y	Z
		С	0.0000000	0.1500050	0.0000000
HCO		0	1.0216570	0.8588750	0.0000000
11003		0	-1.2073720	0.4741530	0.0000000
		О	0.2608750	-1.2368290	0.0000000
		Н	-0.6012750	-1.6696190	0.0000000
		Atom	Х	Y	Z
		С	0.0472790	0.6694150	0.0000000
		Н	-0.8650990	-1.0655190	0.0000000
CH ₃ OH		Н	-0.4423550	1.0721540	0.8897190
		Н	-0.4423550	1.0721540	-0.8897190
		Ο	0.0472790	-0.7602240	0.0000000
		н	1.0878960	0.9865150	0.0000000

		Atom	Х	Y	Z
CH(OH) ₂		С	0.0017350	0.4993510	0.1576900
		Н	0.0310340	1.4905500	-0.2877840
		0	1.0852590	-0.3205960	-0.0676670
	•	Н	1.8946560	0.1594250	0.1449730
		0	-1.1834030	-0.1326710	-0.0714800
		Н	-1.1509440	-1.0199420	0.3098490
		Atom	Х	Y	Z
		С	0.0000000	0.1361180	0.0000000
		0	0.9467940	-0.8159260	0.0000000
H ₂ CO ₃		0	0.2003580	1.3226130	0.0000000
		0	-1.2261470	-0.3905690	0.0000000
		Н	-1.1829920	-1.3574730	0.0000000
		Н	1.8149530	-0.3881740	0.0000000
		Atom	Х	Y	Z
		С	0.0003000	0.5272420	0.0000020
		Н	0.0177050	1.1497390	0.8944640
		Н	-0.0175540	1.1495940	-0.8945070
		0	-1.1715480	-0.2526430	0.1044570
		Н	-1.3146930	-0.7095590	-0.7326230
		0	1.1713170	-0.2527740	-0.1044380
		Н	1.3145950	-0.7098890	0.7325020
0-		Atom	Х	Y	Z
		0	0.0000000	0.0000000	0.0000000

		Atom	X	Y	Z
O ₂		0	0.0000000	0.0000000	0.6025320
	0	0.0000000	0.0000000	-0.6025320	
		Atom	Х	Y	Z
OH		0	0.0000000	0.0000000	0.1084880
		Н	0.0000000	0.0000000	-0.8679000
		Atom	Х	Y	Z
он-		0	0.0000000	0.0000000	0.1069920
		Н	0.0000000	0.0000000	-0.8559380
		Atom	Х	Y	Z
		С	0.5515770	-0.0000480	-0.0423990
ONCO.		0	1.0217870	-1.1373780	0.0861030
UNCO ₂		0	1.0223500	1.1370440	0.0863420
		N	-0.8652110	0.0004790	-0.5442660
		0	-1.7007600	-0.0000490	0.3355870

Table S2. The predicted Gibb's free energies of relevant species in water using the B3LYP density functional theory method with basis sets of aug-cc-pVTZ and C-PCM to account for the solvent effect. (Unit: Hartree)

Species	Sum of electronic and			
species	thermal Free Energies	thermal Enthalpies	thermal Energies	zero-point Energies
NO	-129.959320	-129.936032	-129.936976	-129.939337
NO ⁻	-130.033914	-130.011117	-130.012062	-130.014428
NO ₂	-205.176501	-205.149278	-205.150222	-205.153154
N ₂ O	-184.750318	-184.725403	-184.726347	-184.729023
NO ₂ ⁻	-205.359797	-205.332917	-205.333861	-205.336795
c-HONO	-205.798955	-205.770856	-205.771800	-205.774977
t-HONO	-205.800636	-205.772484	-205.773428	-205.776655
NO ₃ ⁻	-280.589763	-280.561204	-280.562148	-280.565313
N ₂ O ₃	-335.135779	-335.101632	-335.102576	-335.107578
N ₂ O ₄	-410.353447	-410.317887	-410.318831	-410.324138
H^{+}	-0.174563	-0.162203	-0.163147	-0.164564
HO ₂	-150.987291	-150.961316	-150.962260	-150.965118
HNO	-130.538739	-130.513703	-130.514647	-130.517486
H ₂ O	-76.469244	-76.447816	-76.448761	-76.451596
CO ₂	-188.675068	-188.650807	-188.651751	-188.654375
CO_2^-	-188.761979	-188.734761	-188.735705	-188.738661
HCOO ⁻	-189.395611	-189.367877	-189.368822	-189.371801
CO ₃ ^{2–}	-264.181723	-264.152686	-264.153630	-264.156828
с-НСООН	-189.841212	-189.812983	-189.813927	-189.817145
t-HCOOH	-189.842929	-189.814720	-189.815664	-189.818847

CH ₂ OH	-115.105161	-115.077817	-115.078761	-115.082152
HCO ₃ ⁻	-264.675631	-264.645403	-264.646347	-264.649873
CH ₃ OH	-115.753655	-115.726527	-115.727472	-115.730849
CH(OH) ₂	-190.365566	-190.335058	-190.336002	-190.340023
H ₂ CO ₃	-265.117312	-265.086682	-265.087626	-265.091392
CH ₂ (OH) ₂	-191.013510	-190.983652	-190.984597	-190.988513
O	-75.295983	-75.279053	-75.279997	-75.281413
O ₂	-150.400984	-150.377712	-150.378656	-150.381019
ОН	-75.781604	-75.761370	-75.762314	-75.764675
OH⁻	-75.971629	-75.952076	-75.953020	-75.955380
ONCO ₂ ⁻	-318.752138	-318.718765	-318.719709	-318.724338

Table S3. The predicted Gibb's free energy changes of the relevant reactions in water using the B3LYP density functional theory method

 with basis sets of aug-cc-pVTZ and C-PCM to account for the solvent effect.

Reaction	ΔG Hartree	ΔG kcal mol ⁻¹	Reaction	∆G Hartree	ΔG kcal mol ⁻¹
$NO_2^- + OH \rightarrow NO_2 + OH^-$	-0.006729	-4.22	$CH(OH)_2 + NO \rightarrow t$ -HCOOH + HNO	-0.056782	-35.63
$NO_2 + NO \rightarrow N_2O_3$	0.000042	0.03	$\frac{\text{CH(OH)}_2 + \text{CH(OH)}_2}{\rightarrow \text{CH}_2(\text{OH})_2 + c\text{-HCOOH}}$	-0.123590	-77.53
$NO_2 + NO_2 \rightarrow N_2O_4$	-0.000445	-0.28	$\begin{array}{c} \mathrm{CH(OH)}_{2} + \mathrm{CH(OH)}_{2} \\ \rightarrow \mathrm{CH}_{2}(\mathrm{OH})_{2} + t\text{-HCOOH} \end{array}$	-0.125307.	-78.60
$NO + OH \rightarrow c$ -HONO	-0.058031	-36.42	$HCOO^- + OH \rightarrow CO_2^- + H_2O$	-0.054008	-33.89
NO + OH \rightarrow <i>t</i> -HONO	-0.059712	-37.47	$NO + CO_2^- \rightarrow ONCO_2^-$	-0.030839	-19.35
$CH_2(OH)_2 + OH \rightarrow CH(OH)_2 + H_2O$	-0.039696	-24.91	$ONCO_2^- \rightarrow NO + CO_2^-$	0.030839	19.35
$CH(OH)_2 + OH \rightarrow c-HCOOH + H_2O$	-0.163286	-102.46	$ONCO_2^- \rightarrow NO^- + CO_2$	0.043156	27.08
$CH(OH)_2 + OH \rightarrow t-HCOOH + H_2O$	-0.165003	-103.54	$NO^- + H_2O \rightarrow HNO$	-0.007210	-4.52
$CH(OH)_2 + NO \rightarrow c$ -HCOOH + HNO	-0.055065	-34.55	$HNO + HNO \rightarrow N_2O + H_2O$	-0.142084	-89.16