Supporting Information

Au₁₀Ag₁₇(TPP)₁₀(SR)₆Cl₅ Nanocluster: Structure, Transformation and the

Origin of its Photoluminescence

Along Ma,^a Jiawei Wang,^a Jie Kong,^b Yonggang Ren,^a Yuxuan Wang,^a Xiaoshuang Ma,^a Meng Zhou,^{b,*} and Shuxin Wang^{a,*}

^a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China

^b Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

*Corresponding authors. E-mail: <u>shuxin_wang@qust.edu.cn</u> (Shuxin Wang), <u>mzhou88@ustc.edu.cn</u> (Meng Zhou);

Notes: The authors declare no competing financial interest.

This Supporting Information includes:

Experimental Characterization Supplementary Figures S1-S21

Experimental

Chemicals

All reagents were commercially available and used without further purification. Tetrachloroauric(III) acid (HAuCl₄·3H₂O, 99.99% metal basis), silver nitrate (AgNO₃, 98% metals basis), phenylethyl mercaptan (HSCH₂CH₂Ph, 99%), 3,5-bis(trifluoromethyl)thiophenol (HSPh^{3,5-}R₂, R = CF₃, 99%), triphenylphosphine (PPh₃, 98.8%), sodium borohydride (NaBH₄, 98%), sodium hexafluoroantimonate (NaSbF₆, 98%), triethylamine (Et₃N, 98%), rhodamine b (RhB, 99%), perylene (C₂₀H₁₂, 99%), rubrene (C₄₂H₂₈, 99%), acetonitrile (CH₃CN, HPLC grade), ethanol (EtOH, HPLC grade), dichloromethane (DCM, HPLC grade), diethyl ether (C₂H₅OC₂H₅, HPLC grade), tetrahydrofuran (THF, HPLC grade), 2-methyltetrahydrofuran (2-MeTHF, HPLC grade) and n-hexane (Hex, HPLC grade), were purchased from Sigma-Aldrich.

Synthesis of Au₁₀Ag₁₇(TPP)₁₀(SR)₆Cl₅ nanocluster

Typically, HAuCl₄·3H₂O (0.20 g/mL, 250 μ L, 0.13 mmol) and AgNO₃ (25 mg, 0.15 mmol, dissolved in 2 mL of H₂O) were added to the 15 mL of ethanol and 5 mL of CH₂Cl₂ under vigorous stirring. After stirring for 5 min, PPh₃ (200 mg, 0.76 mmol) and HSPh(CF₃)₂ (32 μ l, 0.18 mmol) were added to the reaction. After 30 min, the reaction solution turned colorless and transparent. Next, a freshly prepared solution of NaBH₄ (30 mg, 0.79 mmol, dissolved in 2 mL of H₂O) was added, and the solution gradually changed to dark. The reaction lasted 18 h at room temperature and finally the Au₁₀Ag₁₇ nanocluster was produced (yield ~20 %, Au atom basis). After that, in order to obtain the pure Au₁₀Ag₁₇ nanoclusters, the solution was centrifuged, and the crude product was dissolved in ethanol (50 mL) and stored in a refrigerator (4 °C) for several months. The supernatant was collected by centrifugation. And the crude product was washed with n-hexane three times to get the Au₁₀Ag₁₇ nanocluster. Black, block-shaped crystals were acquired by crystallizing the pure nanoclusters in DCM/Hex (1 : 3) after ~2 weeks at room temperature.

Conversion from Au₁₀Ag₁₇(TPP)₁₀(SR)₆Cl₅ nanocluster to [Au₁₂Ag₁₃(TPP₃)₁₀(PET)₅Cl₂]²⁺ nanocluster

The $Au_{10}Ag_{17}$ (10 mg) and PET (100 µL) were dissolved in 20 mL of CH₂Cl₂ under vigorous stirring. After 3 min, $Au_{10}Ag_{17}$ were converted into the $Au_{12}Ag_{13}$ (yield ~30 %, Au atom basis), then CH₃CN was added to stop the reaction. $Au_{12}Ag_{13}$ was obtained by crystallizing the nanoclusters in DCM/C₂H₅OC₂H₅ (1 : 3) after 3 days.

Characterization

Ultraviolet-visible absorption spectra in this study were recorded on a Shanghai Metash UV-8000 spectrophotometer. All samples were dissolved in DCM or 2-MeTHF for spectrum measurements.

The X-ray photoelectron spectroscopy (XPS) measurements were performed on ESCALAB XI+ configured with a monochromated $Al_{K\alpha}$ (1486.8 eV) 150W X-ray source, 0.5 mm circular spot size, a flood gun to counter charging effects, and the analysis chamber base pressure lower than 1 x10⁻⁹ mbar, data were collected with FAT = 20 eV.

Photoluminescence (PL) spectra of the solutions of clusters were carried out on HITACHI F-4600 PL spectrophotometer. The PLQY of $Au_{10}Ag_{17}$ was calculated with $Ag_{25}(SPh^{2,4}Me_2)_{18}$ (PLQY=0.6%, DCM)

as the reference. And the PLQY of $Au_{12}Ag_{13}$ was calculated with RhB (PLQY=70%, EtOH) as the reference at room temperature.

Temperature-dependent PL spectra and UV-vis absorption spectra of clusters were carried out on NOVA Laboratory Spectrometer of ideaoptics.

Single-crystal X-ray diffraction (SC-XRD) datas of the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters were collected on a Xtalab Synergy diffractometer at 170 K, using Mo-K α radiation (λ = 1.54186 Å). With the help of Olex2, the structure was solved with the ShelXT structure solution program.

The fs-TA experiment was performed on a home-built setup based on a commercial amplified Ti:sapphire laser (Coherent, Astrella, 1 KHz, 7 mJ). The ns-TA experiment was performed on a commercial setup (Nano100, Time-Tech Spectra) using the same fs laser as the pump.

Supplementary Figures

Fig. S1 An optical microscopic image of the single crystals of $Au_{10}Ag_{17}$ nanoclusters, which are grown by the vapor diffusion of n-hexane into a concentrated CH_2Cl_2 solution of the nanocluster.

Fig. S2 The overall structure of the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters. (a) $Au_{10}Ag_{17}$. (b) $Au_{12}Ag_{13}$. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; blue = F; grey = C; white = H.

Fig. S3 UV-vis absorption spectra (photon energy scale) of the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters in CH_2Cl_2 . (a) $Au_{10}Ag_{17}$. (b) $Au_{12}Ag_{13}$. The experimental energy gap of the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters in CH_2Cl_2 was determined as ~1.56 eV and 1.75 eV, respectively.

Fig. S4 XPS spectra of the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters. (a) Survey data of $Au_{10}Ag_{17}$ nanocluster. (b) Survey data of $Au_{12}Ag_{13}$ nanocluster.

Fig. S5 XPS spectra of the Au₁₀Ag₁₇ and Au₁₂Ag₁₃ nanoclusters. (a) Au 4f. (b) Ag 3d.

Fig. S6 . (a) SEM image of a small deformed single crystal of $Au_{10}Ag_{17}$. (b)-(f) Elemental mapping images of Au, Ag, S, P and Cl, respectively.

Fig. S7 (a) Time-dependent optical absorptions of the conversion of $Au_{10}Ag_{17}$ to $Au_{12}Ag_{13}$. (b) The crystal UV-vis absorption spectrum of final product ($Au_{12}Ag_{13}$ nanocluster).

Fig. S8 Structural anatomy of the Au₁₂Ag₁₃ nanocluster. (a) The mono-icosahedral Au₆Ag₇ unit. (b) The biicosahedral Au₁₂Ag₁₃ kernel. (c) The Au₁₂Ag₁₃(SR)₅ structure with five waist SR ligands. (d) The Au₁₂Ag₁₃(PPh₃)₁₀(SR)₅ structure with ten shoulder PPh₃ ligands. (e) The Au₁₂Ag₁₃(PPh₃)₁₀(SR)₅Cl₂ with two vertex Cl ligands. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P. All C and H atoms are omitted for clarity.

Fig. S9 ESI-MS results of the final product $(Au_{12}Ag_{13} \text{ nanocluster})$.

Au₁₀Ag₁₅ kernel + Ag₁(PPh₃)₁(SR)₁Cl₁ structure

Au₁₂Ag₁₃ kernel + 2* CI ligands

Fig. S10 Different surface structure between vertex Ag and shoulder Ag/Au in the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters. (a) The Ag₁(PPh₃)₁(SR)₁Cl₁ surface structure between vertex Ag and shoulder Ag in the $Au_{10}Ag_{17}$ nanocluster. (b) The Au₁Ag₁Cl₁ structure in $Au_{12}Ag_{13}$ nanocluster. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P.

Au₁₀Ag₁₅ kernel + 3* CI ligands

Au₁₂Ag₁₃ kernel + 2* CI ligands

Fig. S11 Bridging mode of Cl in the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters. (a) Bonding between three Cl ligands and the $Au_{10}Ag_{15}$ kernel in $Au_{10}Ag_{17}$ nanocluster. (b) Bonding between two Cl ligands and the $Au_{12}Ag_{13}$ kernel in $Au_{12}Ag_{13}$ nanocluster. Color labels: orange = Au; light blue = Ag; green = Cl.

Fig. S12 M_{25} biicosahedral kernel in the $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters. (a) $Au_{10}Ag_{15}$ kernel in $Au_{10}Ag_{17}$ nanocluster. (b) $Au_{12}Ag_{13}$ kernel in $Au_{12}Ag_{13}$ nanocluster. Color labels: orange = Au; light blue = Ag.

Fig. S13 A unit cell in the $Au_{10}Ag_{17}$ single crystal. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; blue = F; grey = C. All H atoms are omitted for clarity.

Fig. S14 A unit cell in the $Au_{12}Ag_{13}$ single crystal. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; grey = C. All H atoms are omitted for clarity.

Fig. S15 Packing mode of the $Au_{10}Ag_{17}$ in the crystal shown. (a) Along the a axis, (b) Along the b axis, (c) Along the c axis. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; grey = C. All H and F atoms are omitted for clarity.

Fig. S16 Packing mode of the $Au_{12}Ag_{13}$ in the crystal shown. (a) Along the a axis, (b) Along the b axis, (c) Along the c axis. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; grey = C. All H atoms are omitted for clarity.

Fig. S17 Normalized photoluminescence spectra of the $Au_{10}Ag_{17}$ (red, $\lambda_{ex} = 405$ nm) and $Au_{12}Ag_{13}$ (black, $\lambda_{ex} = 405$ nm) nanoclusters in the solid state at room temperature.

Fig. S18 PL excitation spectra of the $Au_{10}Ag_{17}$ nanocluster.

Fig. S19 Temperature-dependent PL spectra and UV-vis absorption spectra of $Au_{10}Ag_{17}$ and $Au_{12}Ag_{13}$ nanoclusters in 2-MeTHF (from 300 K to 80 K, monitored per 10 K). (a) Temperature-dependent PL spectra of $Au_{10}Ag_{17}$ ($\lambda_{ex} = 405$ nm, from 300 K to 80 K, monitored per 10 K). (b) Temperature-dependent UV-vis absorption spectra of $Au_{10}Ag_{17}$. (c) Temperature-dependent PL spectra of $Au_{12}Ag_{13}$ in 2-MeTHF ($\lambda_{ex} = 423$ nm, from 300 K to 80 K, monitored per 10 K). (d) Temperature-dependent UV-vis absorption spectra of $Au_{10}Ag_{17}$. (c) Temperature-dependent PL spectra of $Au_{12}Ag_{13}$ in 2-MeTHF ($\lambda_{ex} = 423$ nm, from 300 K to 80 K, monitored per 10 K). (d) Temperature-dependent UV-vis absorption spectra of

Fig. S20 Geometrical structure (top view and side view) of $Au_{10}Ag_{17}$. Color labels: orange = Au; light blue = Ag; green = Cl; red = S; magenta = P; blue = F; grey = C; white = H.

Fig. S21 (a) ns-TA data map with 490 nm ex. (b) Comparison of TA spectra probed at 1 ns obtained from fs-TA and ns-TA measurements.