Electronic Supplementary Information:

Excited state potential energy surfaces of N-phenylpyrrole upon twisting:

Reference values and comparison between BSE/GW and TD-DFT

Iryna Knysh,¹ Kelvine Letellier,¹ Ivan Duchemin,² Xavier Blase,³ and Denis Jacquemin^{1,4}

¹⁾Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes,

France

 $^{2)} Universit\acute{e}\ Grenoble\ Alpes,\ CEA,\ IRIG-MEM-L_Sim,\ 38054\ Grenoble,$

France

³⁾ Université Grenoble Alpes, CNRS, Institut Néel, F-38042 Grenoble, France

⁴⁾Institut Universitaire de France, 75005 Paris, France

(*Electronic mail: xavier.blase@neel.cnrs.fr; Denis.Jacquemin@univ-nantes.fr)

FIG. S1. PES for the 1B and 2B ES of N-PP calculated at the (a) $CCSD(T)(a)^*$, (b) CCSD, (c) CC2, (d) TD-CAM-B3LYP, and (e) BSE/evGW/CAM-B3LYP levels of theory with the cc-pVTZ atomic basis set. The GS energy of the planar molecule was used as a reference to calculate the relative energies. In the case of the BSE/evGW calculations, the GS energy is calculated at CAM-B3LYP level.

FIG. S2. PES for the (a) 1B, (b) 2A, (c) 2B, (d) 3A, (e) 3B, and (f) 4A states of N-PP determined at CCSD(T)(a)*, CCSD, and CC2 levels. The GS energy of the untwisted geometry was used as a reference for the calculation of relative energies.

FIG. S3. PES for the six lowest ES of N-PP calculated at the (a) TD-PBE0, (b) BSE/evGW/PBE0, (c) TD-CAM-B3LYP, and (d) BSE/evGW/CAM-B3LYP levels of theory with the cc-pVTZ atomic basis set. Relative energies use the GS energy of the planar molecule as a reference. In the case of the BSE/evGW calculations, the GS energy is calculated at the corresponding DFT level.

FIG. S4. PES for the (a) 1B, (b) 2A, (c) 2B, (d) 3A, (e) 3B, and (f) 4A states of N-PP determined at TD-DFT and BSE/evGW levels with the PBE, PBE0, and CAM-B3LYP functionals compared to the CCSD(T)(a)* reference. As a reference for the calculation of relative energies, the GS energy of the untwisted geometry was used (for BSE/evGW - the GS energy obtained with corresponding DFT functional).

RELATIVE ENERGIES AND DIFFERENCES BETWEEN CC METHODS

TABLE S1. Calculated relative energies $(\Delta E_{\rm rel})$ for the 1B state of N-PP using CCSD(T)(a)*, CCSD, and CC2 levels of theory. The differences (ΔE_{diff}) between the last two methods and the $CCSD(T)(a)^*$ reference as well as MAE values are also listed. Calculations have been done with the cc-pVTZ atomic basis set. The GS energy of the untwisted molecule is used as a reference to calculate relative energies. All values are in eV.

(0)		$\Delta E_{\rm diff}{}^{\rm a}$			
(-)	$CCSD(T)(a)^*$	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$
		1B			
0	4.733	4.823	4.777	0.090	0.045
10	4.723	4.814	4.766	0.091	0.043
20	4.712	4.802	4.754	0.090	0.042
30	4.726	4.814	4.769	0.087	0.043
40	4.772	4.855	4.820	0.083	0.048
50	4.842	4.919	4.899	0.077	0.057
60	4.921	4.992	4.991	0.071	0.069
70	4.993	5.059	5.076	0.065	0.082
80	5.043	5.104	5.135	0.061	0.092
90	5.061	5.121	5.157	0.060	0.096
MAE ^b				0.078	0.062

^a $\Delta E_{\text{diff}}^{\text{Method}} = \Delta E_{\text{rel}}^{\text{Method}} - \Delta E_{\text{rel}}^{\text{CCSD}(\text{T})(a)*}$

b MAE _
$$\sum_{i=1}^{10} |\Delta E_{\rm rel}^{\rm Method} - \Delta E_{\rm rel}^{\rm CCSD(T)(a)}$$

$$MAE = \frac{2i \pm 1 + rei}{10}$$

(0)		$\Delta E_{ m rel}$				
(°)	CCSD(T)(a)*	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$	
		2A				
0	5.142	5.239	5.072	0.097	-0.070	
10	5.144	5.242	5.073	0.098	-0.072	
20	5.175	5.274	5.098	0.099	-0.077	
30	5.254	5.357	5.169	0.102	-0.086	
40	5.377	5.484	5.281	0.107	-0.096	
50	5.520	5.637	5.411	0.117	-0.109	
60	5.660	5.795	5.537	0.134	-0.124	
70	5.777	5.942	5.636	0.165	-0.141	
80	5.846	6.059	5.696	0.213	-0.150	
90	5.862	6.108	5.715	0.246	-0.147	
MAE				0.138	0.107	

TABLE S2. Theoretical relative energies (in eV) for the 2A state of N-PP using $CCSD(T)(a)^*$, CCSD, and CC2 levels of theory.^a

^a See caption of Table S1 for more info.

TABLE S3. Theoretical relative energies (in eV) for the 2B state of N-PP using $CCSD(T)(a)^*$, CCSD, and CC2 levels of theory.^a

(0)		ΔE	$\Delta E_{ m diff}$		
(*)	CCSD(T)(a)*	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$
		2B			
0	5.544	5.771	5.465	0.227	-0.079
10	5.535	5.763	5.453	0.228	-0.082
20	5.529	5.760	5.438	0.231	-0.091
30	5.545	5.783	5.440	0.238	-0.105
40	5.583	5.831	5.460	0.248	-0.124
50	5.629	5.892	5.487	0.263	-0.142
60	5.668	5.948	5.510	0.280	-0.157
70	5.693	5.988	5.530	0.294	-0.163
80	5.708	6.010	5.545	0.303	-0.163
90	5.712	6.018	5.551	0.305	-0.162
MAE				0.262	0.127

(0)		$\Delta E_{ m rel}$				
(*)	CCSD(T)(a)*	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$	
		3A				
0	6.092	6.442	5.926	0.350	-0.166	
10	6.058	6.409	5.892	0.351	-0.166	
20	5.987	6.341	5.823	0.354	-0.164	
30	5.918	6.279	5.759	0.361	-0.160	
40	5.875	6.241	5.721	0.366	-0.154	
50	5.866	6.227	5.716	0.361	-0.151	
60	5.894	6.228	5.735	0.334	-0.159	
70	5.941	6.235	5.771	0.294	-0.171	
80	5.993	6.245	5.809	0.251	-0.184	
90	6.021	6.252	5.827	0.231	-0.194	
MAE				0.325	0.167	

TABLE S4. Theoretical relative energies (in eV) for the 3A state of N-PP using $CCSD(T)(a)^*$, CCSD, and CC2 levels of theory.^a

^a See caption of Table S1 for more info.

TABLE S5. Theoretical relative energies (in eV) for the 3B state of N-PP using $CCSD(T)(a)^*$, CCSD, and CC2 levels of theory.^a

(0)		ΔE	$\Delta E_{ m diff}$		
(*)	CCSD(T)(a)*	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$
		3B			
0	6.489	6.714	6.375	0.224	-0.115
10	6.469	6.694	6.352	0.225	-0.117
20	6.431	6.659	6.307	0.228	-0.124
30	6.398	6.633	6.264	0.234	-0.134
40	6.372	6.614	6.226	0.242	-0.146
50	6.352	6.594	6.186	0.242	-0.165
60	6.341	6.571	6.144	0.229	-0.197
70	6.339	6.552	6.103	0.213	-0.236
80	6.335	6.542	6.069	0.206	-0.266
90	6.333	6.538	6.056	0.205	-0.277
MAE				0.225	0.178

(0)		ΔE_{c}	$\Delta E_{ m diff}$		
(*)	$CCSD(T)(a)^*$	CCSD	$\mathbf{CC2}$	CCSD	$\mathbf{CC2}$
		4A			
0	6.561	6.675	6.609	0.114	0.049
10	6.538	6.650	6.585	0.112	0.046
20	6.490	6.598	6.533	0.108	0.043
30	6.442	6.544	6.484	0.102	0.042
40	6.412	6.505	6.452	0.093	0.040
50	6.402	6.491	6.442	0.089	0.040
60	6.408	6.505	6.453	0.098	0.045
70	6.432	6.536	6.477	0.103	0.045
80	6.481	6.550	6.502	0.069	0.020
90	6.501	6.537	6.510	0.035	0.009
MAE				0.092	0.038

TABLE S6. Theoretical relative energies (in eV) for the 4A state of N-PP using $CCSD(T)(a)^*$, CCSD, and CC2 levels of theory.^a

^a See caption of Table S1 for more info.

TABLE S7. CCSD and CC2 MAE values for each of six states (collected from the previous Tables) and their total MAE (MAE_{tot}).

State	CCSD	CC2
1B	0.078	0.062
2A	0.138	0.107
2B	0.262	0.127
3A	0.325	0.167
3B	0.225	0.178
4A	0.092	0.038
MAE _{tot}	0.187	0.113

RELATIVE ENERGIES AND DIFFERENCES BETWEEN TD-DFT METHODS

TABLE S8. Calculated relative energies (ΔE_{rel}) for the 1B state of N-PP using TD-DFT with the PBE, PBE0, and CAM-B3LYP exchange-correlation functionals. The differences (ΔE_{diff}) with the CCSD(T)(a)* reference and MAE values are also listed. Calculations have been done with the cc-pVTZ atomic basis set. The GS energy of the untwisted molecule is used as a reference to calculate relative energies. All values are in eV.^a

		$\Delta E_{ m rel}$				$\Delta E_{ m diff}$			
(°)			TD-DFT						
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP		
				1B					
0	4.733	4.264	4.825	4.990	-0.468	0.092	0.257		
10	4.723	4.245	4.809	4.982	-0.478	0.086	0.259		
20	4.712	4.205	4.784	4.975	-0.507	0.071	0.263		
30	4.726	4.174	4.786	4.993	-0.553	0.060	0.266		
40	4.772	4.161	4.829	5.043	-0.611	0.057	0.271		
50	4.842	4.166	4.906	5.120	-0.676	0.064	0.278		
60	4.921	4.180	5.006	5.206	-0.741	0.084	0.285		
70	4.993	4.196	5.118	5.272	-0.797	0.125	0.279		
80	5.043	4.207	5.229	5.301	-0.836	0.186	0.258		
90	5.061	4.211	5.296	5.307	-0.850	0.235	0.246		
MAE					0.652	0.106	0.266		

		$\Delta E_{ m rel}$				$\Delta E_{ m diff}$			
(°)			TD-DFT						
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP		
				2A					
0	5.142	4.553	5.073	5.069	-0.589	-0.070	-0.073		
10	5.144	4.537	5.045	5.073	-0.607	-0.100	-0.072		
20	5.175	4.503	4.993	5.102	-0.672	-0.181	-0.073		
30	5.254	4.471	4.981	5.175	-0.784	-0.274	-0.079		
40	5.377	4.433	5.021	5.285	-0.944	-0.355	-0.091		
50	5.520	4.381	5.079	5.409	-1.139	-0.442	-0.111		
60	5.660	4.314	5.122	5.507	-1.346	-0.538	-0.154		
70	5.777	4.245	5.143	5.545	-1.532	-0.634	-0.232		
80	5.846	4.191	5.147	5.559	-1.655	-0.699	-0.287		
90	5.862	4.171	5.146	5.564	-1.691	-0.716	-0.298		
MAE					1.096	0.401	0.147		

TABLE S9. Theoretical relative energies (in eV) for the 2A state of N-PP at the TD-DFT level of theory. $^{\rm a}$

^a See caption of Table S8 for more info.

TABLE S10.	Theoretical	relative	energies	(in eV)	for the	2B	state	of N-PP	at the	TD-DFT	level
of theory. ^a											

		Δ	$E_{\rm rel}$		$\Delta E_{ m diff}$		
(°)	CCCD(m)(-)*						
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP
				2B			
0	5.544	3.967	4.725	5.272	-1.577	-0.819	-0.272
10	5.535	3.949	4.716	5.265	-1.587	-0.820	-0.270
20	5.529	3.901	4.694	5.260	-1.628	-0.834	-0.269
30	5.545	3.838	4.667	5.273	-1.707	-0.878	-0.272
40	5.583	3.772	4.637	5.305	-1.811	-0.946	-0.279
50	5.629	3.708	4.607	5.342	-1.921	-1.022	-0.287
60	5.668	3.652	4.576	5.379	-2.015	-1.091	-0.289
70	5.693	3.608	4.550	5.422	-2.085	-1.144	-0.272
80	5.708	3.579	4.531	5.471	-2.129	-1.177	-0.236
90	5.712	3.569	4.524	5.494	-2.144	-1.188	-0.218
MAE					1.860	0.992	0.266

		$\Delta E_{ m rel}$				$\Delta E_{ m diff}$			
(°)			TD-DFT						
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP		
				3A					
0	6.092	3.886	4.792	5.914	-2.206	-1.300	-0.179		
10	6.058	3.861	4.785	5.879	-2.198	-1.273	-0.180		
20	5.987	3.798	4.772	5.800	-2.188	-1.215	-0.187		
30	5.918	3.727	4.743	5.716	-2.192	-1.175	-0.202		
40	5.875	3.666	4.697	5.651	-2.209	-1.177	-0.224		
50	5.866	3.626	4.660	5.617	-2.240	-1.206	-0.250		
60	5.894	3.609	4.642	5.636	-2.285	-1.252	-0.258		
70	5.941	3.606	4.638	5.721	-2.335	-1.303	-0.221		
80	5.993	3.611	4.642	5.816	-2.383	-1.352	-0.178		
90	6.021	3.614	4.644	5.864	-2.407	-1.378	-0.158		
MAE					2.264	1.263	0.204		

TABLE S11. Theoretical relative energies (in eV) for the 3A state of N-PP at the TD-DFT level of theory. $^{\rm a}$

^a See caption of Table S8 for more info.

TABLE S12.	Theoretical	relative	energies	(in eV)	for the	3B	state	of N-PP	at the	TD-D	FT	level
of theory. ^a												

		Δ	$\Delta E_{ m diff}$				
(°)	CCSD(T)(a)*			TD-	DFT		
		PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP
				3B			
0	6.489	5.331	5.999	6.399	-1.158	-0.490	-0.090
10	6.469	5.319	5.982	6.384	-1.150	-0.487	-0.085
20	6.431	5.297	5.946	6.358	-1.134	-0.484	-0.073
30	6.398	5.279	5.905	6.337	-1.120	-0.493	-0.061
40	6.372	5.263	5.853	6.316	-1.109	-0.519	-0.056
50	6.352	5.248	5.786	6.283	-1.103	-0.565	-0.069
60	6.341	5.236	5.704	6.238	-1.106	-0.637	-0.103
70	6.339	5.225	5.610	6.189	-1.114	-0.728	-0.150
80	6.335	5.218	5.513	6.146	-1.118	-0.823	-0.190
90	6.333	5.215	5.450	6.127	-1.118	-0.883	-0.206
MAE					1.123	0.611	0.108

		Δ	$E_{ m rel}$		$\Delta E_{ m diff}$			
(°)	C(C(D)(T))(-)*			TD-	DFT			
	$CCSD(T)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP	
				4 A				
0	6.561	5.665	6.345	6.417	-0.895	-0.215	-0.144	
10	6.538	5.650	6.326	6.398	-0.889	-0.212	-0.140	
20	6.490	5.627	6.287	6.360	-0.863	-0.202	-0.130	
30	6.442	5.651	6.254	6.327	-0.791	-0.188	-0.115	
40	6.412	5.693	6.231	6.312	-0.719	-0.181	-0.100	
50	6.402	5.775	6.208	6.310	-0.627	-0.194	-0.092	
60	6.408	5.864	6.180	6.301	-0.544	-0.227	-0.107	
70	6.432	5.925	6.156	6.258	-0.507	-0.276	-0.175	
80	6.481	5.955	6.141	6.185	-0.526	-0.340	-0.296	
90	6.501	5.963	6.136	6.141	-0.538	-0.365	-0.360	
MAE					0.690	0.240	0.166	

TABLE S13. Theoretical relative energies (in eV) for the 4A state of N-PP at the TD-DFT level of theory. $^{\rm a}$

^a See caption of Table S8 for more info.

TABLE S14. MAE values for each of six states (collected from the previous Tables) and their total MAE (MAE_{tot}) for the TD-DFT levels of theory.

<u> </u>		TD-DFT	
State	PBE	PBE0	CAM-B3LYP
1B	0.652	0.106	0.266
2A	1.096	0.401	0.147
2B	1.860	0.992	0.266
3A	2.264	1.263	0.204
3B	1.123	0.611	0.108
4A	0.690	0.240	0.166
MAE _{tot}	1.281	0.602	0.193

RELATIVE ENERGIES AND DIFFERENCES BETWEEN BSE/EVGW METHODS

TABLE S15. Calculated relative energies (ΔE_{rel}) for the 1B state of N-PP using the BSE/ev*GW* level of theory with the PBE, PBE0, and CAM-B3LYP results as a starting point. The differences (ΔE_{diff}) with the CCSD(T)(a)* reference and MAE values are also listed. Calculations have been done with the cc-pVTZ atomic basis set. The DFT GS energy of the untwisted molecule is used as a reference to calculate relative energies. All values are in eV.^a

		Δ	$\Delta E_{ m diff}$					
(°)				$\mathbf{BSE}/$	$\operatorname{ev} GW$			
	CCSD(1)(a)*	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP	
				1B				
0	4.733	4.725	4.748	4.767	-0.008	0.015	0.034	
10	4.723	4.719	4.740	4.759	-0.004	0.017	0.036	
20	4.712	4.722	4.736	4.754	0.009	0.024	0.041	
30	4.726	4.756	4.760	4.774	0.030	0.034	0.047	
40	4.772	4.830	4.821	4.825	0.058	0.050	0.053	
50	4.842	4.930	4.912	4.904	0.088	0.070	0.062	
60	4.921	5.027	5.010	4.994	0.105	0.089	0.073	
70	4.993	5.087	5.089	5.075	0.094	0.095	0.082	
80	5.043	5.104	5.127	5.129	0.061	0.084	0.086	
90	5.061	5.103	5.135	5.147	0.042	0.074	0.086	
MAE					0.050	0.055	0.060	

		Δ	$E_{ m rel}$		$\Delta E_{ m diff}$				
(°)				\mathbf{BSE}/\mathbf{C}	$\operatorname{ev} GW$				
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP		
				2A					
0	5.142	4.896	4.932	4.949	-0.246	-0.211	-0.193		
10	5.144	4.902	4.935	4.953	-0.242	-0.209	-0.191		
20	5.175	4.940	4.967	4.985	-0.235	-0.208	-0.190		
30	5.254	5.026	5.044	5.062	-0.228	-0.210	-0.192		
40	5.377	5.159	5.164	5.177	-0.218	-0.212	-0.199		
50	5.520	5.318	5.315	5.319	-0.202	-0.205	-0.201		
60	5.660	5.477	5.474	5.469	-0.183	-0.186	-0.191		
70	5.777	5.606	5.617	5.610	-0.171	-0.160	-0.166		
80	5.846	5.680	5.706	5.711	-0.167	-0.140	-0.136		
90	5.862	5.699	5.730	5.739	-0.163	-0.132	-0.123		
MAE					0.205	0.187	0.178		

TABLE S16. Theoretical relative energies (in eV) for the 2A state of N-PP using the BSE/evGW level of theory. $^{\rm a}$

_

^a See caption of Table S15 for more info.

TABLE S17.	Theoretical r	elative energies	(in eV)	for the 2E	3 state of N-PP	using the	BSE/evGW
level of theor	y. ^a						

		Δ.	$E_{ m rel}$		$\Delta E_{ m diff}$			
(°)				$\mathbf{BSE}/$	′ev <i>GW</i>			
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP	
				2B				
0	5.544	5.126	5.194	5.258	-0.419	-0.350	-0.287	
10	5.535	5.123	5.191	5.254	-0.412	-0.345	-0.282	
20	5.529	5.133	5.197	5.260	-0.396	-0.332	-0.269	
30	5.545	5.169	5.229	5.292	-0.376	-0.316	-0.253	
40	5.583	5.232	5.289	5.348	-0.351	-0.294	-0.235	
50	5.629	5.308	5.366	5.422	-0.321	-0.263	-0.208	
60	5.668	5.381	5.444	5.496	-0.286	-0.224	-0.171	
70	5.693	5.439	5.507	5.558	-0.254	-0.187	-0.135	
80	5.708	5.474	5.545	5.597	-0.234	-0.162	-0.110	
90	5.712	5.483	5.556	5.609	-0.229	-0.156	-0.103	
MAE					0.328	0.263	0.205	

		Δ	$E_{ m rel}$	$\Delta E_{ m diff}$			
(°)	C(C(D)(T))(-)*			$\mathbf{BSE}/$	$\operatorname{ev} GW$		
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP
				3A			
0	6.092	5.882	5.934	5.977	-0.211	-0.158	-0.115
10	6.058	5.851	5.903	5.946	-0.207	-0.156	-0.112
20	5.987	5.786	5.837	5.883	-0.200	-0.149	-0.104
30	5.918	5.725	5.777	5.823	-0.193	-0.142	-0.096
40	5.875	5.692	5.741	5.783	-0.182	-0.134	-0.092
50	5.866	5.694	5.739	5.772	-0.173	-0.128	-0.094
60	5.894	5.726	5.763	5.787	-0.167	-0.131	-0.107
70	5.941	5.783	5.808	5.820	-0.158	-0.133	-0.122
80	5.993	5.852	5.881	5.881	-0.142	-0.113	-0.113
90	6.021	5.884	5.939	5.949	-0.137	-0.082	-0.072
MAE					0.177	0.133	0.103

TABLE S18. Theoretical relative energies (in eV) for the 3A state of N-PP using the BSE/evGW level of theory. $^{\rm a}$

^a See caption of Table S15 for more info.

TABLE S19.	Theoretical relative	e energies (in e ^v	V) for the $3B$	state of N-PP	using the	BSE/evGW
level of theor	v. ^a					

		Δ.	$E_{ m rel}$		$\Delta E_{ m diff}$			
(°)				$\mathbf{BSE}/$	evGW			
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP	
				3B				
0	6.489	6.121	6.205	6.262	-0.369	-0.285	-0.228	
10	6.469	6.106	6.190	6.248	-0.363	-0.279	-0.221	
20	6.431	6.080	6.165	6.224	-0.350	-0.266	-0.206	
30	6.398	6.062	6.149	6.210	-0.336	-0.249	-0.189	
40	6.372	6.056	6.144	6.201	-0.316	-0.228	-0.171	
50	6.352	6.060	6.146	6.196	-0.291	-0.206	-0.155	
60	6.341	6.076	6.151	6.190	-0.265	-0.191	-0.151	
70	6.339	6.110	6.162	6.185	-0.228	-0.177	-0.154	
80	6.335	6.152	6.179	6.182	-0.184	-0.156	-0.153	
90	6.333	6.167	6.186	6.179	-0.166	-0.147	-0.154	
MAE					0.287	0.218	0.178	

		Δ		$\Delta E_{ m diff}$			
(°)				$\mathbf{BSE}/$	$\operatorname{ev} GW$		
	$CCSD(1)(a)^*$	PBE	PBE0	CAM-B3LYP	PBE	PBE0	CAM-B3LYP
				4A			
0	6.561	6.170	6.202	6.240	-0.390	-0.358	-0.321
10	6.538	6.151	6.182	6.221	-0.388	-0.356	-0.317
20	6.490	6.112	6.141	6.185	-0.378	-0.348	-0.305
30	6.442	6.079	6.104	6.154	-0.363	-0.339	-0.288
40	6.412	6.067	6.084	6.139	-0.345	-0.328	-0.273
50	6.402	6.077	6.093	6.142	-0.325	-0.309	-0.260
60	6.408	6.093	6.114	6.153	-0.314	-0.294	-0.255
70	6.432	6.087	6.116	6.149	-0.346	-0.316	-0.284
80	6.481	6.049	6.072	6.099	-0.432	-0.409	-0.382
90	6.501	6.024	6.022	6.032	-0.477	-0.479	-0.469
MAE					0.376	0.354	0.315

TABLE S20. Theoretical relative energies (in eV) for the 4A state of N-PP using the BSE/evGW level of theory. $^{\rm a}$

^a See caption of Table S15 for more info.

TABLE S21. MAE values for each of six states (collected from the previous Tables) and their total MAE (MAE_{tot}) for the BSE/evGW level of theory.

<u>Stata</u>	${f BSE/ev}GW$		
State	PBE	PBE0	CAM-B3LYP
1B	0.050	0.055	0.060
2A	0.205	0.187	0.178
2B	0.328	0.263	0.205
3A	0.177	0.133	0.103
3B	0.287	0.218	0.178
4A	0.376	0.354	0.315
MAE _{tot}	0.237	0.202	0.173

CARTESIAN COORDINATES

The ground state structures with the twist angle between the pyrrole and phenyl rings going from 0° to 90° by 10° steps are given below and were optimized at the CCSD/cc-pVDZ level of theory. These optimizations were done constraining the twist angles and thus, the 0° and 90° structures have C_{2v} symmetry, while the others fall into the C_2 point group. These optimizations were done using the Gaussian 16 program.

0° twist angle

\mathbf{C}	-0.000000	0.000000	0.417890
\mathbf{C}	1.213735	0.000000	1.136307
\mathbf{C}	-1.213735	-0.000000	1.136307
\mathbf{C}	0.000000	0.000000	3.254275
\mathbf{C}	1.208212	0.000000	2.539696
\mathbf{C}	-1.208212	0.000000	2.539696
\mathbf{C}	1.125937	-0.000000	-1.824346
С	-1.125937	-0.000000	-1.824346
\mathbf{C}	0.719250	-0.000000	-3.144059
\mathbf{C}	-0.719250	-0.000000	-3.144059
Ν	-0.000000	-0.000000	-1.006958
Н	2.172065	0.000000	0.612546
Н	-2.172065	-0.000000	0.612546
Н	2.164613	0.000000	3.074171
Н	-2.164613	0.000000	3.074171
Н	0.000000	0.000000	4.349127
Н	2.131171	-0.000000	-1.411202
Н	-2.131171	-0.000000	-1.411202
Н	1.380756	-0.000000	-4.011330
Н	-1.380756	-0.000000	-4.011330

10° twist angle

\mathbf{C}	-0.000000	-0.000000	0.418083
\mathbf{C}	1.214458	0.002784	1.134608
\mathbf{C}	-1.214458	-0.002784	1.134608
\mathbf{C}	0.000000	-0.000000	3.251886
\mathbf{C}	1.208903	-0.000989	2.538048
\mathbf{C}	-1.208903	0.000989	2.538048
\mathbf{C}	1.109613	-0.193034	-1.822150
\mathbf{C}	-1.109613	0.193034	-1.822150
\mathbf{C}	0.708305	-0.125100	-3.142170
\mathbf{C}	-0.708305	0.125100	-3.142170
Ν	-0.000000	0.000000	-1.006054
н	2.170773	0.029161	0.607029
н	-2.170773	-0.029161	0.607029
н	2.164819	0.002684	3.073387
н	-2.164819	-0.002684	3.073387
н	0.000000	-0.000000	4.346770
н	2.092417	-0.399237	-1.405402
н	-2.092417	0.399237	-1.405402
н	1.358075	-0.247167	-4.009743
н	-1.358075	0.247167	-4.009743

\mathbf{C}	-0.000000	-0.000000	0.418679
\mathbf{C}	1.216052	0.004582	1.130900
\mathbf{C}	-1.216052	-0.004582	1.130900
\mathbf{C}	-0.000000	-0.000000	3.246534
\mathbf{C}	1.210508	-0.002749	2.534469
\mathbf{C}	-1.210508	0.002749	2.534469
\mathbf{C}	1.060484	-0.381466	-1.817352
\mathbf{C}	-1.060484	0.381466	-1.817352
\mathbf{C}	0.675917	-0.246043	-3.138052
\mathbf{C}	-0.675917	0.246043	-3.138052
Ν	-0.000000	0.000000	-1.004199
Н	2.168103	0.043392	0.594738
Н	-2.168103	-0.043392	0.594738
Η	2.165289	0.002323	3.071829
Η	-2.165289	-0.002323	3.071829
Η	-0.000000	-0.000000	4.341498
Η	1.984871	-0.767540	-1.392502
Η	-1.984871	0.767540	-1.392502
Н	1.292347	-0.482606	-4.006336
Н	-1.292347	0.482606	-4.006336

30° twist angle

\mathbf{C}	0.000000	-0.000000	0.419693
\mathbf{C}	1.217688	0.005372	1.127234
\mathbf{C}	-1.217688	-0.005372	1.127234
\mathbf{C}	0.000000	-0.000000	3.240950
\mathbf{C}	1.212335	-0.004706	2.531003
\mathbf{C}	-1.212335	0.004706	2.531003
\mathbf{C}	0.979097	-0.559538	-1.812558
\mathbf{C}	-0.979097	0.559538	-1.812558
\mathbf{C}	0.623158	-0.359286	-3.134042
\mathbf{C}	-0.623158	0.359286	-3.134042
Ν	-0.000000	0.000000	-1.002653
Н	2.165387	0.044618	0.581852
Н	-2.165387	-0.044618	0.581852
Н	2.165818	-0.000105	3.070657
Н	-2.165818	0.000105	3.070657
Н	0.000000	-0.000000	4.336022
Н	1.820554	-1.098069	-1.379099
Н	-1.820554	1.098069	-1.379099
Н	1.187784	-0.699697	-4.003103
н	-1.187784	0.699697	-4.003103

\mathbf{C}	-0.000000	-0.000000	0.421104
\mathbf{C}	1.218921	0.005384	1.124721
\mathbf{C}	-1.218921	-0.005384	1.124721
\mathbf{C}	-0.000000	-0.000000	3.236672
\mathbf{C}	1.213981	-0.006185	2.528753
\mathbf{C}	-1.213981	0.006185	2.528753
\mathbf{C}	0.867414	-0.721342	-1.809144
\mathbf{C}	-0.867414	0.721342	-1.809144
\mathbf{C}	0.551599	-0.461563	-3.131413
\mathbf{C}	-0.551599	0.461563	-3.131413
Ν	0.000000	0.000000	-1.002050
Н	2.163027	0.038948	0.571688
Н	-2.163027	-0.038948	0.571688
Н	2.166295	-0.002878	3.070440
Н	-2.166295	0.002878	3.070440
н	-0.000000	-0.000000	4.331860

Η	1.606416	-1.390165	-1.368804
Н	-1.606416	1.390165	-1.368804
Н	1.048509	-0.893748	-4.001084
н	-1.048509	0.893748	-4.001084

50° twist angle

\mathbf{C}	-0.000000	-0.000000	0.422794
\mathbf{C}	1.219644	0.004836	1.123610
\mathbf{C}	-1.219644	-0.004836	1.123610
\mathbf{C}	-0.000000	-0.000000	3.234130
\mathbf{C}	1.215286	-0.006739	2.527934
\mathbf{C}	-1.215286	0.006739	2.527934
\mathbf{C}	0.728707	-0.861478	-1.807422
\mathbf{C}	-0.728707	0.861478	-1.807422
\mathbf{C}	0.463304	-0.549926	-3.130417
\mathbf{C}	-0.463304	0.549926	-3.130417
Ν	0.000000	0.000000	-1.002437
Н	2.161130	0.030911	0.565198
Н	-2.161130	-0.030911	0.565198
Н	2.166680	-0.004754	3.071189
Н	-2.166680	0.004754	3.071189
Н	-0.000000	-0.000000	4.329430
Н	1.347150	-1.641121	-1.362649
Н	-1.347150	1.641121	-1.362649
Н	0.878688	-1.060414	-4.000452
Н	-0.878688	1.060414	-4.000452

60° twist angle

\mathbf{C}	-0.000000	-0.000000	0.424540
\mathbf{C}	1.219957	0.003912	1.123571
\mathbf{C}	-1.219957	-0.003912	1.123571
\mathbf{C}	-0.000000	-0.000000	3.233024
\mathbf{C}	1.216242	-0.006187	2.528171
\mathbf{C}	-1.216242	0.006187	2.528171
\mathbf{C}	0.567295	-0.975347	-1.807020
\mathbf{C}	-0.567295	0.975347	-1.807020
\mathbf{C}	0.360783	-0.621784	-3.130628
\mathbf{C}	-0.360783	0.621784	-3.130628
Ν	0.000000	-0.000000	-1.003474
Η	2.159729	0.022850	0.561850
Η	-2.159729	-0.022850	0.561850
Η	2.166971	-0.005145	3.072529
Η	-2.166971	0.005145	3.072529
Η	-0.000000	-0.000000	4.328421
Η	1.048104	-1.845651	-1.359961
Η	-1.048104	1.845651	-1.359961
Н	0.682980	-1.195476	-4.000817
н	-0.682980	1.195476	-4.000817

\mathbf{C}	-0.000000	-0.000000	0.426066
\mathbf{C}	1.220036	0.002734	1.124028
\mathbf{C}	-1.220036	-0.002734	1.124028
\mathbf{C}	-0.000000	-0.000000	3.232738
\mathbf{C}	1.216897	-0.004661	2.528848
\mathbf{C}	-1.216897	0.004661	2.528848
\mathbf{C}	0.388251	-1.059315	-1.807282
\mathbf{C}	-0.388251	1.059315	-1.807282

\mathbf{C}	0.247027	-0.674907	-3.131354
\mathbf{C}	-0.247027	0.674907	-3.131354
Ν	0.000000	-0.000000	-1.004662
Н	2.158768	0.015185	0.560425
Н	-2.158768	-0.015185	0.560425
Н	2.167180	-0.004159	3.073932
Н	-2.167180	0.004159	3.073932
Н	-0.000000	-0.000000	4.328211
Н	0.717093	-1.997220	-1.359248
Н	-0.717093	1.997220	-1.359248
Н	0.466951	-1.295033	-4.001575
Н	-0.466951	1.295033	-4.001575

80° twist angle

\mathbf{C}	-0.000000	-0.000000	0.427106
\mathbf{C}	1.220027	0.001403	1.124489
\mathbf{C}	-1.220027	-0.001403	1.124489
\mathbf{C}	-0.000000	-0.000000	3.232753
\mathbf{C}	1.217285	-0.002485	2.529448
\mathbf{C}	-1.217285	0.002485	2.529448
\mathbf{C}	0.197174	-1.110753	-1.807651
\mathbf{C}	-0.197174	1.110753	-1.807651
\mathbf{C}	0.125499	-0.707535	-3.132012
\mathbf{C}	-0.125499	0.707535	-3.132012
Ν	0.000000	0.000000	-1.005563
Н	2.158189	0.007619	0.559905
Н	-2.158189	-0.007619	0.559905
Н	2.167311	-0.002282	3.074942
Н	-2.167311	0.002282	3.074942
Н	-0.000000	-0.000000	4.328274
Н	0.364091	-2.090334	-1.359240
Н	-0.364091	2.090334	-1.359240
Н	0.237009	-1.356027	-4.002215
н	-0.237009	1.356027	-4.002215

\mathbf{C}	0.000000	-0.000000	0.427641
\mathbf{C}	1.220016	-0.000000	1.124835
\mathbf{C}	-1.220016	-0.000000	1.124835
\mathbf{C}	0.000000	-0.000000	3.232951
\mathbf{C}	1.217414	-0.000000	2.529843
\mathbf{C}	-1.217414	-0.000000	2.529843
\mathbf{C}	-0.000000	1.128076	-1.807642
\mathbf{C}	-0.000000	-1.128076	-1.807642
\mathbf{C}	-0.000000	0.718539	-3.132102
\mathbf{C}	-0.000000	-0.718539	-3.132102
Ν	-0.000000	0.000000	-1.005731
Н	2.157995	-0.000000	0.559945
Н	-2.157995	-0.000000	0.559945
Н	2.167358	-0.000000	3.075466
Н	-2.167358	-0.000000	3.075466
Н	0.000000	-0.000000	4.328488
Н	-0.000000	2.121723	-1.359135
Н	-0.000000	-2.121723	-1.359135
Н	-0.000000	1.376583	-4.002285
н	-0.000000	-1.376583	-4.002285