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Experimental Methods

Chemicals

Deionized and purified water, which was used as solvent for all test mixtures studied in this

work, was produced with a purification system of Merck Millipore (Elix Essential 5). In

Table S.1, information on the other chemicals used for the preparation of these mixtures is

summarized.
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Table S.1: Suppliers and purities of the chemicals used in this work. Purities are indicated
as specified by the suppliers.

Chemical Formula Supplier Purity

acetone C3H6O Fisher Scientific ≥99.80%

acetic acid C2H4O2 Carl Roth ≥99.80%

acetonitrile C2H3N Fisher Scientific ≥99.90%

ascorbic acid C6H8O6 Carl Roth ≥99.00%

1,4-butanediol C4H10O2 Sigma Aldrich ≥99.00%

citric acid C6H8O7 Carl Roth ≥99.50%

cyclohexanone C6H10O Sigma Aldrich ≥99.80%

1,4-dioxane C4H8O2 Sigma Aldrich ≥99.80%

glucose C6H12O6 Carl Roth ≥99.50%

malic acid C4H6O5 Sigma Aldrich ≥99.00%

1-propanol C3H8O Honeywell ≥99.50%

2-propanol C3H8O Merck ≥99.90%

TMSP-d4 NaC6H9D4O2Si Sigma Aldrich ≥98.00%

xylose C5H10O5 Alfa Aesar ≥98.00%

NMR Analysis

Sample Preparation and NMR Spectroscopy

Samples of test mixtures (>20 g) were prepared gravimetrically in glass vessels using a

balance of Mettler Toledo with an accuracy of ±0.001 g. Approximately 1 ml of each sample

was transferred to a 5 mm NMR tube. All NMR experiments were carried out at 25◦C with

a 400 MHz Avance NMR spectrometer from Bruker with a Double Resonance Broad Band

CryoProbe. The temperature control of the spectrometer was calibrated against a platinum

resistance thermometer. The absolute uncertainty of the temperature is estimated to be

lower than 1 K for the NMR experiments.

Quantitative inverse gated 1D 13C NMR spectra, with a flip angle of 90◦, a relaxation

delay of 185-200 s, 64-128 scans, a maximum acquisition time of 15.33 s, and a maximum

bandwidth of 250 ppm were recorded. Inverse gated 13C distortionless enhancement by po-

larization transfer (DEPT) 90/135 NMR spectra were recorded with a relaxation delay of
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60-200 s, 4-32 scans, a maximum acquisition time of 15.33 s, and a maximum bandwidth

of 250 ppm. An additional quantitative inverse gated 1D 13C NMR spectrum with the

same number of scans was recorded. A one-bond proton-carbon coupling constant 1JCH of

145 Hz that determines the specific delay in the DEPT experiment was chosen (for fur-

ther details, see, e.g., Ref.1). All chemical shifts are referenced to the shift of sodium

3-(trimethylsilyl)tetradeuteriopropionate (TMSP-d4) by recording an additional 13C NMR

spectrum with a small amount of TMSP-d4 after all other NMR experiments were carried

out. Automatic baseline and phase correction was applied with MestReNova before the

manual peak integration was done. In most cases, the relative error compared to the true

composition was smaller than 5%.

PFG NMR Spectroscopy

Self-diffusion coefficients in the studied mixtures were measured at 25◦C with the same

instrument that was used for the acquisition of the 1D NMR spectra as described above.

For recording the 13C pulsed-field gradient (PFG) NMR spectra, a stimulated echo sequence

with bipolar pulsed gradients similar to the one used in recent work of our group2,3 was

applied. In contrast to our prior work,2,3 the decoupler was additionally turned on for a

maximum of 7 s prior to the stimulated echo sequence here to obtain an enhancement of the

13C peaks based on the nuclear overhauser effect (NOE), that does not sacrifice the peaks

of quaternary carbons.4 For each mixture, seven PFG measurements with varying gradient

strength G ranging from 2.55 to 48.46 G cm-1 (in equal steps of G2) were performed; the

diffusion of the components thereby causes an attenuation of the peaks, from which the self-

diffusion coefficient can be calculated,5 cf. Eq.(2) in the manuscript. The diffusion time ∆

was chosen as 50 ms for all measurements, and τ was 218.4 µs. The gradient pulse duration

δ was adjusted to the respective sample and was between 5.4 and 7.0 ms. A relaxation

delay of 100-158 s, 40-120 scans, a maximum acquisition time of 18.42 s, and a maximum

bandwidth of 250 ppm was chosen. Automatic baseline and phase correction, peak alignment,
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and exponential line broadening of 1 Hz were applied with MestReNova. The peak heights

needed in Eq.(2) in the manuscript were also evaluated by MestReNova.

Distinction between Substitution Degrees with DEPT

NMR

By using different pulse angles, the DEPT experiments enable the differentiation of basically

all substitution degrees of carbon nuclei, i.e., primary, secondary, tertiary, and quaternary

ones, because they show, depending on the combination of pulse angle and substitution

degree, either positive or negative enhancements of their peaks, or are (almost) completely

suppressed from the spectrum.1

The distinction between primary, secondary, tertiary, and quaternary carbons was made

as follows: quaternary carbons could easily be identified as they, in theory, do not show any

peaks in conventional DEPT NMR spectra but only in the quantitative 13C NMR spectrum.

However, since, in practice, a small residual peak of quaternary carbons is usually detected

also in DEPT spectra, we used a quantitative 13C NMR spectrum with the same number of

scans as the respective DEPT spectra as a reference for deciding whether a peak is ’present’ or

’absent’ in the DEPT spectra. In all cases here, the area of the residual peak of a quaternary

carbon in the DEPT spectra was negligible compared to the area of the respective peak in

the quantitative 13C NMR spectrum.

Subsequently, the other types of carbons could also be distinguished in a straightforward

manner: secondary carbons are the only type that shows negative peaks in DEPT 135

spectra. Primary and tertiary carbons can then be distinguished based on DEPT 90 spectra,

where primary carbons should, in theory, show no peak; however, due to the appearance of

residual peaks in practice, we considered the ratio of the areas of the respective peaks in the

DEPT 90 and the DEPT 135 spectrum, which was well below unity in all cases of a primary

carbon.
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We used the peaks of the designated reference component to phase the DEPT 135 NMR

spectrum. This was done for the sake of simplicity but, in practice, DEPT can also be used

for the classification of peaks without prior knowledge of any component. In that situation,

the phase correction could be carried out based on a peak of any reference component that

is added to the mixture prior to the NMR analysis.

PFG NMR Spectra and Assignment of Peaks

Figures S.1-S.3 show 13C PFG NMR spectra of mixtures I-III for a gradient strength G =

2.55 G cm−1. Based on these spectra, it was decided which peaks were to be distinguished.

We note that, especially for completely unknown mixtures, this procedure can be ambiguous,

e.g., due to small distortions that can lead to a ”splitting” of a peak. We, therefore, first

carried out an exponential line broadening of 1 Hz, which is a standard processing step of

NMR spectra. The great majority of peaks in the 13C PFG NMR spectra recorded in this

work did not show an overlapping with other peaks. Additionally, we used the peak heights

to determine the self-diffusion coefficients in all cases to mitigate the effects of overlapping

peaks on the evaluation of the diffusion coefficient.
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Figure S.1: 13C PFG NMR spectrum of mixture I with gradient strength G = 2.55 G cm−1.
All distinguished peaks are indicated by their respective chemical shifts.
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Figure S.2: 13C PFG NMR spectrum of mixture II with gradient strength G = 2.55 G cm−1.
All distinguished peaks are indicated by their respective chemical shifts.
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Figure S.3: 13C PFG NMR spectrum of mixture III with gradient strength G = 2.55 G cm−1.
All distinguished peaks are indicated by their respective chemical shifts.

K-medians Algorithm and Silhouette Score

In the present work, we propose to use K-medians clustering, which is a variant of the K-

means algorithm that is more robust towards outliers.6,7 In the K-medians algorithm, the

center of each cluster is calculated by the median of all data points associated with this

cluster, and the following objective function is minimized for a specified number of clusters,

i.e., pseudo-components, K:

J =
P∑

p=1

K∑
k=1

rp,k ∥xp − ck∥1 (S.1)

where P is the total number of peaks in the 13C NMR spectrum of the studied mixture. xp

contains the input data for peak p as described in the manuscript, and ck represents the

center of the kth cluster. rp,k is a binary indicator that captures to which cluster k peak p
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is assigned: if peak p is assigned to cluster k, then rp,k = 1, otherwise rp,k = 0. ∥xp − ck∥1
denotes the L1 distance, i.e., the sum of the absolute distances in the individual coordinates

(also called ’manhatten’ or ’cityblock’ distance), between xp and ck.

K-medians clustering was performed using the ’kmeans’ function in MATLAB 2021b8

and setting the distance metric to ’cityblock’ to use the L1 distance. The algorithm thereby

uses a component-wise median to determine the cluster centers, i.e., the median is calculated

independently in each dimension. Since the algorithm is a local optimization algorithm, 1000

replicates were used, and only the solution with the lowest J , cf. Eq.(S.1), was kept6,9 for

each specified number of clusters K.

Since the number of clusters K, i.e., the number of pseudo-components that are to be

distinguished in the studied mixture, is a priori unknown in most cases in practice, it also

needs to be set by the algorithm. For this purpose, we used the so-called silhouette score s,

which is a common metric for automatically selecting the most suitable number of clusters for

a given clustering problem.10 The silhouette score s was thereby first calculated individually

for each data point xp as follows using the MATLAB function ’silhouette’ with the L1

distance metric:

s(xp) =
b(xp)− a(xp)

max{b(xp), a(xp)}
(S.2)

where a(xp) is the average distance of xp from all other data points in the same cluster (to

which xp is assigned), and b(xp) is the smallest average distance of xp to all points in a

different cluster; again, the L1 distance was thereby used as distance metric. The definition

of a(xp) and b(xp) was slightly adapted for the special case of a cluster that contains only a

single data point as discussed and explained in the following section.

The silhouette score can, by definition, have values between -1 and 1, where -1 indicates

that the data point xp is ’totally dissimilar’ to the other points in the same cluster, whereas

a silhouette score of 1 indicates that the data point fits perfectly into the assigned cluster.

By averaging the obtained silhouette scores of all data points associated with a cluster (via

the arithmetic mean), a mean silhouette score for each cluster was obtained. Subsequently,
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the mean silhouette scores of the clusters were again averaged (via the arithmetic mean) to

obtain an overall silhouette score s(K), which only depends on the assumed total number of

clusters K, i.e., the number of pseudo-components considered here. This two-step averaging

process was chosen to ensure that clusters with different numbers of assigned data points

are weighted equally for the calculation of the final silhouette score s(K).

For selecting the appropriate number of clusters, K-medians clustering was performed

with values of K ranging from 2 to P , i.e., up to the total number of peaks in the 13C NMR

spectrum of the mixture, and in each case, the overall silhouette score s(K) was calculated;

then, the number of clusters K with the highest s(K) was adopted.

Calculation of Silhouette Coefficients for Single Data Points

For calculating the individual silhouette scores s for each data point, the MATLAB function

’silhouette’ was used, which we, however, had to adapt as described in the following. The

reason for this is that in the special case of a cluster that contains only a single data point,

which is denoted as x∗
p in the following, the silhouette score s(x∗

p) is not well defined since

there are no distances a(x∗
p) within the cluster that could be calculated here. While this

case might not be relevant in many other situations, in particular, if the number of data

points N greatly exceeds the expected number of clusters K (N >> K), it needs to be

considered for the application considered here: there are, in fact, components that show

only a single peak in an NMR spectrum, e.g., 1,4-dioxane or benzene in proton-decoupled

13C NMR spectroscopy, to name only two of many examples.

The default setting in MATLAB for the calculation of the silhouette score s(x∗
p), in this

case, is to set s(x∗
p) = 1, i.e., to assume a perfect assignment. This, in turn, leads to a model

that favors solutions with an unreasonably high number of clusters (in our case: pseudo-

components). To circumvent this issue, we used the experimental uncertainty ep,95% of x∗
p

for a(x∗
p), i.e., the intra-cluster distance, if the respective cluster contains x

∗
p as the only data

point. We furthermore defined b(x∗
p) as the minimal L1 distance to any other data point in
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this case. The intuition behind this is as follows: a data point with a small error, i.e., small

a(x∗
p), but with a large distance to all other data points, i.e., large b(x∗

p), is likely to represent

a (pseudo-)component that shows only a single peak in the NMR spectrum; hence, defining

a cluster consisting of the respective data point only should, in this case, result in a high

silhouette score s(x∗
p). On the other hand, a data point with a rather large error bar, i.e.,

large a(x∗
p), that is close to any other data point, i.e., low b(x∗

p), is not so likely to represent

a separate cluster, which should, in this case, result in a small or even negative silhouette

score s(x∗
p).

In Figure S.4 we demonstrate that the default behavior of the MATLAB function ’sil-

houette’ would lead to the largest overall silhouette scores s(K) if the assumed number of

clusters K matches the total number of peaks P in the 13C NMR spectrum. Hence, the clus-

tering algorithm would always define the maximum possible number of pseudo-components,

where all pseudo-components consist of only a single structural group and would show only

a single peak in the 13C NMR spectrum; such a result is, however, highly unrealistic. Fig-

ure S.4 demonstrates this using mixture I from the manuscript as an example, where the

overall silhouette score s(K) continuously increases with increasing K.
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Figure S.4: Overall silhouette score s(K) for the clustering of peaks in the 13C NMR spectrum
of mixture I with the K-medians algorithm for different numbers of clusters K as calculated
with the default MATLAB setting.

Prediction of Molar Masses and Normalized Diffusion

Coefficients

There are different methods for the prediction of molar masses from self-diffusion coefficients

in the literature; Ref.11 gives a good overview. We, therefore, briefly recapitulate only those

concepts that are relevant for the development of our method in the following.

Good predictions can be obtained by internal calibration methods, where multiple refer-

ence components are added to the sample that contains the unknown component. Oftentimes

a power-law is then fitted to the reference components in the sample, which is subsequently

used for the prediction of the molar mass of the unknown component.11,12 Of course, this

requires that the reference components, among other things, are ideally inert and sufficiently

soluble in the studied solvent;12 and it requires the addition of reference components to the

mixture of interest. Therefore, in Ref.13 an external calibration method for the prediction

of molar masses was developed, which requires only one known component in the mixture.
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The authors thereby introduced the concept of ’normalized diffusion coefficients’:

log(Dx,norm) = log(Dref,fix)− log(Dref) + log(Dx) (S.3)

where log(Dx,norm) is the normalized self-diffusion coefficient of the unknown component

(labeled ’x’ here), Dref and Dx are the measured self-diffusion coefficients of the reference

and unknown component in the sample, respectively, andDref,fix is the known value of the self-

diffusion coefficient of the reference component that was determined by measuring only the

reference component in the same solvent. We note thatDref,fix only has to be determined once

for each reference component in a specific solvent and then can be used for the determination

of molar masses of unknown components.

Solvent-specific power-laws (for different shapes of unknown components) are then fitted

to the normalized diffusion coefficients of a large number of components. In consequence,

Eq.(S.3) can be seen as a method to link the measured self-diffusion coefficient of an unknown

component (in the actual sample) to a hypothetical sample to which the power-law was fitted,

which then enables a good prediction of molar masses without requiring several reference

components.

In the following, we show that the concept of normalized diffusion coefficients is similar to

what we use in Eq. (4) in the manuscript, where we assume that the ratio of the self-diffusion

coefficients of an unknown component to that of a reference component in a mixture is the

same as their ratio at infinite dilution in the solvent. We also show in the following that both

approaches are directly linked to the concept of relative diffusion coefficients (cf. Eq. (3) in

the manuscript).

Starting with Eq.(S.3), rearranging and applying logarithmic rules yields:

log

(
Dx

Dref

)
= log

(
Dx,norm

Dref,fix

)
(S.4)
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Taking the exponent of Eq.(S.4) results in:

Dx

Dref

=
Dx,norm

Dref,fix

(S.5)

In the following, we assume that the reference state is at infinite dilution and switch indices

to our notation (x → Ũ):

DŨ

Dref

=
D∞

Ũ,norm

D∞
ref,fix

(S.6)

The resulting Eq.(S.6) is equivalent to the concept of relative diffusion (Eq.(3) in the manuscript)

at two different concentrations, or to Eq.(4) in the manuscript. In contrast to Ref.,13 we

did not fit a solvent-specific power-law; instead, we directly applied the SEGWE14,15 model,

which was developed for describing diffusion coefficients at infinite dilution. Furthermore, the

SEGWE model has been demonstrated to perform reasonably well using just one universal

fit parameter for different solvents.14–16

Concentration Dependence of Relative Diffusion Coeffi-

cients

To verify the validity of Eq. (4) from the manuscript, i.e., that the ratio of the diffusion

coefficients of two components (a known reference component and a pseudo-component Ũ

here) is approximately constant for different compositions, two aqueous systems were studied

here as examples. Table S.2 gives an overview of these systems and specifies the composition

of two mixtures that were prepared for each system. In system A, 2-propanol was chosen

as reference component, for which a value for the diffusion coefficient at infinite dilution in

water at 298.15 K of D∞
ref = 0.99 · 10−9m2s−1 was taken from Ref.17 (as in the manuscript).

In system B, acetone was chosen as reference component, for which D∞
ref = 1.3 ·10−9m2s−1 in

water at 298.15 K was taken from Ref.18 Figure S.5 shows the ratio
DŨ

Dref
for the two systems

measured by PFG NMR (cf. Section PFG NMR Spectroscopy). For all components, the

13



arithmetic mean of the self-diffusion coefficients of the respective peaks of the components

were taken.

Table S.2: Overview of the studied aqueous mixtures for verifying Eq. (4) in the manuscript.
All mixtures additionally contain the solvent water.

System Component i xi / mol mol-1

A

2-propanol 0.050

malic acid 0.011

2-propanol 0.010

malic acid 0.050

B

acetone 0.010

acetic acid 0.090

acetone 0.090

acetic acid 0.011

The ratio of the self-diffusion coefficients of the reference component and the pseudo-

component stays nearly constant, irrespective of the different concentrations of the compo-

nents in the studied mixtures.
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Figure S.5: Measured dependence of the ratio
DŨ

Dref
on the mole fraction of the reference

component, cf. Table S.2 and Eq. (4) in the manuscript.

Identification and Quantification of Structural Groups

Most of the considered structural groups, cf. Table 1 in the manuscript, contain only one

carbon nucleus that shows a peak in the respective region of the 13C NMR spectrum, which

we denote by zg = 1 for group g. There are two exceptions: first, the alkenyl groups

(’CH=CH / C=C’), which contain two carbon nuclei that usually show peaks in the same

region of the NMR spectrum, i.e., zg = 2; and second, the (alkyl + ketone) groups (’CH3CO

/ CH2CO’), which also contain two carbon nuclei, but for which one can expect one peak

in the region 0-60 ppm in the 13C NMR spectrum (of the ’CH3 / CH2’ part) and another

peak in the region >180 ppm (of the ’CO’ part), and, hence, zg = 1 for each of the two

regions. As a consequence, the concentration of ’CH3/CH2’ groups was calculated from the

peak area in the assigned regions that exceeds the peak area in the region >180 ppm for

each pseudo-component. Also note that if a ’CH3’ group is detected in a pseudo-component,

’CH3CO’ is chosen, otherwise ’CH2CO’.
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Determination of Water-free Composition

of Pseudo-components

From the clustering of structural groups to pseudo-components and the peak areas Ap,

the ratio of structural groups in each pseudo-component, i.e., a group mole fraction xg,k,

can be calculated for every pseudo-component. In turn, together with the molar mass Mk

of each pseudo-component k, as predicted by the SEGWE model based on the PFG NMR

experiments, this enables the determination of the total number of groups νk in each pseudo-

component:

νk =
Mk∑G

g=1 xg,kMg

(S.7)

where Mg is the molar mass of group g, cf. Table S.3.

Table S.3: Molar massMg of all considered groups in this work, cf. Table 1 in the manuscript.

Group Mg / g mol-1

CH3 15.04

CH2 14.03

CH 13.02

C 12.01

OH 17.01

CH=CHa 26.04

C=Ca 24.02

COOH 45.02

CHO 29.02

CH3COa/CH2COa 43.05/42.04

aTo obtain the correct number of NMR-active nuclei zk in the pseudo-component, z∗g = 2
has to be used for these groups since they contain two carbon atoms.

From this, the absolute number of each structural group g in pseudo-component k can

be calculated:

νg,k = xg,kνk (S.8)

From this, in turn, the absolute number of NMR-active nuclei (here 13C) zk in each pseudo-
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component can be calculated together with z∗g , which is the number of NMR-active nuclei in

structural group g:

zk =
G∑

g=1

νg,kz
∗
g (S.9)

The mole fraction x∗
k of each pseudo-component k in the water-free solution (which shows

no signal in 13C NMR), can then be determined using the quantitative results from the 13C

NMR spectrum:

x∗
k =

∑G
g=1 Ag,k

zk∑K
k=1

(∑G
g=1 Ag,k

zk

) (S.10)

, where Ag,k is the total area of all peaks associated to group g in pseudo-component k.

Note that, with Eq. (S.10) also the mole fraction of the known reference component in the

water-free solution is obtained, whereby zk = zref is also known.

Structural Group Composition

Composition of True Components

Table S.4 shows the composition of all components studied in this work regarding the groups

of original UNIFAC.19,20 Note that the UNIFAC nomenclature uses ’THF,’19 as an abbre-

viation for cyclic ether groups. Since we found this misleading, we use ’cy-CH2O’ instead.
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Table S.4: Components considered in this work and their composition regarding groups from
the UNIFAC table.19,20 The numbers in parentheses are the identifiers for the sub-groups
and the corresponding main-groups.

Component UNIFAC groups

acetone
1 x ’CH3’ (1,1)

1 x ’CH3CO’ (18,9)

acetic acid
1 x ’CH3’ (1,1)

1 x ’COOH’ (42,20)

acetonitrile 1 x ’CH3CN’ (40,19)

ascorbic acid

1 x ’CH2’ (2,1)

2 x ’CH’ (3,1)

4 x ’OH’ (14,5)

1 x ’C=C’ (70,2)

1 x ’COO’ (77,41)

1,4-butanediol
4 x ’CH2’ (2,1)

2 x ’OH’ (14,5)

citric acid

2 x ’CH2’ (2,1)

1 x ’C’ (4,1)

1 x ’OH’ (14,5)

3 x ’COOH’ (42,20)

cyclohexanone
4 x ’CH2’ (2,1)

1 x ’CH2CO’ (19,9)

1,4-dioxane
2 x ’CH2’ (2,1)

2 x ’cy-CH2O’ (27,13)

glucose

1 x ’CH2’ (2,1)

4 x ’CH’ (3,1)

5 x ’OH’ (14,5)

1 x ’CHO’ (26,13)

malic acid

1 x ’CH2’ (2,1)

1 x ’CH’ (3,1)

1 x ’OH’ (14,5)

2 x ’COOH’ (42,20)

1-propanol

1 x ’CH3’ (1,1)

2 x ’CH2’ (2,1)

1 x ’OH’ (14,5)

2-propanol

2 x ’CH3’ (1,1)

1 x ’CH’ (3,1)

1 x ’OH’ (14,5)

water 1 x ’H2O’ (16,7)

xylose

4 x ’CH’ (3,1)

4 x ’OH’ (14,5)

1 x ’cy-CH2O’ (27,13)
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Predicted Molar Masses and Composition of Pseudo-components

Tables S.5-S.7 show the predicted absolute numbers of the structural groups g in each pseudo-

component k, denoted by νg,k, in the three test mixtures, cf. Table 2 in the manuscript, as

well as the predicted molar masses of the pseudo-components Mk. Note that the stoichiome-

try and molar mass of the component that was considered as the known reference component

here (Ũ1), which was needed for the determination of the stoichiometry of the other pseudo-

components, is not included.

Table S.5: Absolute numbers νg,k of structural groups g according to UNIFAC19,20 in pseudo-
components k and predicted molar masses Mk (g mol-1) of defined pseudo-components for
test mixture I, cf. Table 2 in the manuscript.

Ũ2 Ũ3 Ũ4

Mk 48.98 145.21 72.11

νCH3,k 0.782 - 1.147

νCH2,k - 6.464 -

νCH,k - - -

νC,k - - -

νOH,k - 3.206 -

νCH=CH,k - - -

νC=C,k - - -

νCOOH,k - - 1.219

νCHO,k - - -

νCH3CO,k 0.865 - -

νCH2CO,k - - -
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Table S.6: Absolute numbers νg,k of structural groups g according to UNIFAC19,20 in pseudo-
components k and predicted molar masses Mk (g mol-1) of defined pseudo-components for
test mixture II, cf. Table 2 in the manuscript.

Ũ2 Ũ3

Mk 94.47 212.08

νCH3,k - -

νCH2,k 3.879 1.898

νCH,k - 1.680

νC,k - 0.759

νOH,k - 2.846

νCH=CH,k - 0.203

νC=C,k - -

νCOOH,k - 2.238

νCHO,k - -

νCH3CO,k - -

νCH2CO,k 0.953 -

Table S.7: Absolute numbers νg,k of structural groups g according to UNIFAC19,20 in pseudo-
components k and predicted molar masses Mk (g mol-1) of defined pseudo-components for
test mixture III, cf. Table 2 in the manuscript.

Ũ2 Ũ3 Ũ4 Ũ5 Ũ6 Ũ7 Ũ8

Mk 51.71 71.06 85.26 115.96 148.90 248.36 313.85

νCH3,k 0.853 1.111 2.111 - - - -

νCH2,k - - 1.409 4.688 6.625 1.812 1.617

νCH,k - - 0.712 - - 3.681 3.135

νC,k - - - - - - -

νOH,k - - 1.440 - 3.291 4.577 4.752

νCH=CH,k - - - - - 0.435 -

νC=C,k - - - - - - 0.858

νCOOH,k - 1.208 - - - 1.907 3.308

νCHO,k - - - - - - -

νCH3CO,k 0.903 - - - - - -

νCH2CO,k - - - 1.194 - - -
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Discussion of Uncertainties

The result of the proposed method, namely, the predicted composition of a poorly specified

mixture with regard to pseudo-components, can be influenced by different sources of errors

or uncertainties. These sources are:

(a) Incorrect identification of structural groups

While the correct identification of the structural groups in a poorly specified mixture

is of course the basis for a meaningful definition of pseudo-components, the influence

of errors here can, in many cases, be expected to have only a minor influence on the

application of the results in combination with group-contribution methods. This is due

to the fact that the identification here is physics-based, namely, based on information

on the chemical shift of peaks in the NMR spectra and on the substitution degree of

carbon nuclei. This procedure results in incorrectly predicted structural groups usually

being identified as very similar structural groups, with only a small influence on the

modeling results.

(b) Experimental error of the quantitative NMR analysis

The experimental error of the quantitative NMR analysis was well below 5% in most

cases here, cf. Section Sample Preparation and NMR Spectroscopy, and, thus, of only

minor influence on the results of the present work.

(c) Experimental error of the PFG NMR experiments

The experimental error of the PFG NMR experiments, resulting in uncertainties in the

measured diffusion coefficients, was also very small, namely, in average in the order of

2%, cf. Figures 2, 4, and 6 in the manuscript.

(d) Errors introduced by the SEGWE model

Errors introduced by the SEGWE model have a direct influence on the molar masses

predicted from the measured diffusion coefficients. In the original paper,15 the authors
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reported a root-mean-square deviation in the order of 15% for predicted diffusion coef-

ficients. The rather large expected errors comply with the observations in Figures 8 –

10 of the manuscript. We can therefore consider the errors introduced by the SEGWE

model as the main source of error for the results of the present work.

(e) Experimental error of the diffusion coefficient of the defined reference component

For the application of the proposed method, also the diffusion coefficient of a known

reference component at infinite dilution in the solvent of the poorly specified mixture

is required. In the present work, we have adopted the respective experimental values

from the literature. Of course, also these values come with an uncertainty, which can

introduce an additional error of the proposed method’s results.

Additional Results

NMR Fingerprinting

Figure S.6 shows the results of the NMR fingerprinting in the form of group mole fractions

xg. In mixture I (Figure S.6 (a)), the group mole fractions are predicted very accurately.

Small deviations can be attributed to experimental uncertainties of the NMR analysis. Also

in mixture II (Figure S.6 (b)), the agreement is good in most cases. Small deviations can be

found due to the misinterpretation of ’OH’ and ’CH2’ as ’cy-CH2O’ groups. Furthermore the

’CHO’ group is missed by our method. In mixture III (Figure S.6 (c)) the ’CH3CN’ group

(=acetonitrile) is missed and falsely predicted as ’C=C’ and ’CH3’ groups. Furthermore,

a small amount of the ester group (’COO’) is missed leading to an overprediction of the

’COOH’ group. ’CH2CO’ and ’CH3CO’ groups can furthermore not be differentiated here,

since no distinction between different pseudo-components is made here.
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Figure S.6: Prediction of structural groups in test mixtures, cf. Table 2 in the manuscript.
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Clustering with Prior Information

Figure S.7 shows the results of the clustering with the K-medians algorithm for mixture II

from the manuscript, but here by fixing K = 4, which is the true number of components

(except water and neglecting the anomers of glucose) in the mixture. Hence, in this case,

a sort of prior information (on the number of components in the mixture) was used instead

of automatically choosing K based on the overall silhouette score. The results show that,

in this case, the clustering algorithm correctly assigns all peaks (structural) groups to the

different pseudo-components.

Figure S.7: DOSY map of mixture II with the result of the clustering of peaks (structural
groups) by the K-medians algorithm and setting the number of clusters to K = 4. Different
clusters are indicated by different colors and the respective true components are denoted in
the legend. The error bars indicate the 95 % confidence intervals based on a t-distribution.

In Figure S.8 results of the clustering with the K-medians algorithm for mixture III from

the manuscript are shown but here by fixingK = 10, which is the true number of components

(except water and neglecting the anomers of xylose, cf. manuscript) in the mixture. By using

this prior knowledge, the clustering algorithm correctly assigns all peaks (structural) groups
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to the different pseudo-components.

Figure S.8: DOSY map of mixture III with the result of the clustering of peaks (structural
groups) by the K-medians algorithm and setting the number of clusters to K = 10. Different
clusters are indicated by different colors and the respective true components are denoted in
the legend. The error bars indicate the 95 % confidence intervals based on a t-distribution.

Influence of Reference Component on Predicted Molar Masses

In Figure S.9, the prediction of the molar masses of the pseudo-components defined by the

K-medians algorithm in mixture III, cf. Figure 6 in the manuscript, with the SEGWE

model, is shown. In contrast to Figure 10 in the manuscript, xylose (instead of acetonitrile)

was chosen as reference component. A value for the diffusion coefficient of xylose at infinite

dilution in water at 298.15 K of D∞
ref = 7.495 · 10−10m2s−1 was adopted from Ref.21 and used

in Eq. (4) from the manuscript.
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Figure S.9: Prediction of molar masses of pseudo-components in mixture III by considering
xylose as reference component.

If we compare the results shown here to the results in Figure 10 in the manuscript, we

observe an improved prediction of the molar masses of 1,4-butanediol, malic acid, and ascor-

bic acid in Figure S.9. However, the prediction of the molar masses of the rather small and

less polar components, like acetone and acetonitrile, is slightly worse compared to Figure 10

in the manuscript. We assign these findings to the fact that we assume a constant ratio
DŨ

Dref

for the extrapolation from finite concentrations to infinite dilution for all pseudo-components

Ũ. The results indicate that a (slightly) different ratio for the different components could

improve the results. We can furthermore speculate that chemically similar species, e.g.,

highly polar components, like 1,4-butanediol, xylose, malic acid, and ascorbic acid, can be

treated well using the same ratio, but that this does not hold for less similar components

like acetonitrile. Hence, in principle, it might be possible to exploit such knowledge to refine

the ratio for the different pseudo-components (based on the group-specific composition that

is automatically obtained with our method) in future work.
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