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Theoretical method 

In this work, we present the TDWP method in more detail using the atom-diatom 

reactions (A + BC) as an example. For the TDWP method1-3, the Hamiltonian in 

reactant Jacobi coordinates for a conserved total angular momentum J can be written 

as 
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where L and j are the orbital diatomic rotational angular momentum quantum numbers, 

respectively. R  and r  are the reduced masses for the two radial Jacobi coordinates 

(R, r), respectively. ( )V̂ , ,R r   is the atom-diatom interaction potential, and V(r) is the 

diatom potential energy curve. The total time-dependent wavefunction of the system 

can be expanded in terms of the translational-vibrational-rotational basis as4-6 
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where p is the parity of the system. M and K are the components of the total angular 

momentum on the space-fixed (SF) z axis and the BF z axis. The translation basis 

functions ( )nu R  are chosen as the sine function with an equidistant discrete variable 

representation (DVR)7 grid. The vibrational basis set ( )v r is the eigenfunction of the 

BC molecular Hamiltonian. For the angular part, the parity-adapted BF basis can be 

written as1  

 ( ) ( )cosJMp Jp

jK MK jKy D y =   (4) 

where ( )Jp

MKD   is the parity-adapted normalized Wigner rotation matrix8 that only 

depends on Euler angles Ω, and ( )cosjKy   are spherical harmonics. In this 

representation, rotational angular momentum ĵ  and orbital angular momentum are 

coupled to Ĵ . The quantum number K ranges from 0 to J for even total parity and from 

1 to J for odd total parity. 
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In the TDWP method, the time-dependent Schrödinger equation can be solved by 

the second-order split-operator scheme9, 10 
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where t is the propagation time and Δ the time interval. For the dynamic calculations of 

a non-adiabatic reaction involving two coupled electronic states, the potential energy 

operator V̂  can be written as a 2×2 off-diagonal matrix as follows:  
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Because the potential energy operator is not diagonal in the diabatic representation, it 

is necessary to convert it to the adiabatic representation: 
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where Ei (i = 1, 2) and T are the eigenvalues and eigenvectors of the diabatic potential 

energy matrix respectively, which can be obtained by diagonalizing eq (6). 

Consequently, the scattered wave function can be obtained by evaluating the effect 

of the Hamiltonian on the propagating wave packet, that is, matrix-vector multiplication. 

In addition, the initial wave packet needs to be determined before its propagation. The 

wave packet with a definite initial state (v0, j0, l0) can be constructed as1, 11 
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where ( )
0 0v j r is the initial rovibrational eigenfunction of BC diatom, ( )

0 0
cosJM

j ly   is 

the total angular momentum eigenfunction in the SF representation, and G(R) is a 

Gaussian function with the position Rc and width δ  
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The propagation of the wave packet is conveniently performed in the BF frame 

since the BF z-axis is chosen to be along the vector R. The initial wave pack with 

selected initial quantum state (v0, j0, K0) in the BF representation can be obtained by1  
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where 0

0 0
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l KC  is defined as the parity-adapted orthogonal transformation matrix. 

The main task of the TDWP calculations is the action of the Hamiltonian matrix 

on the wave vector. Evaluating the action of individual operators in eq (5) in appropriate 

representations is the most efficient means. During wave packet propagation, the 

construction of absorption potential can effectively avoid the reflection of wave packet 

from the grid edge. In this work, the absorption potential along r and R directions is 

defined as11, 12 
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where Ca and Cb define the strength of absorbing potentials, and xa, xb, and xend are the 

positions of absorbing potentials. 

Before the wave packet enters the absorption potential region, the reactant-

coordinate-based (RCB) method13 is employed to perform the transformation from 

reactant to product Jacobi coordinates. Next, the energy resolved scattering wave 

function ( )
0

;
v

E R  in the product BF coordinate can be extracted by a Fourier 

transformation 
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The state-to-state scattering matrix element in the product BF representation can be 

obtained by 

 ( )( )
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where  l  is an outgoing Riccati-Hankel function. Finally, the reaction probability, 

integral cross section and differential cross section can be obtained using the S-matrix 

under the helicity representation. 
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Fig.S1 The product vibration state distribution of Li(2p) + H2(v0 = 0, j0 = 0, 1) → H + 

LiH reaction at selected collision energies (a, c) Ec = 0.64 eV and (b, d) Ec = 0.99 eV 

calculated by the CC, CSA and ICSA methods. 
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Fig.S2 The opacity functions of the Mg+ + H2 (v0 = 0, j0 = 0) → MgH+ + H reaction as 

the function of total angular momentum J at the selected collision energies Ec = 5.0 

eV calculated by the CC, CSA and ICSA methods. 
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Fig.S3 Comparison of CC, CSA and ICSA methods for the product vibration state 

distribution of Mg+ + H2 (v0 = 0, j0 = 0) → MgH+ + H reaction at selected collision 

energies (a) Ec = 4.0 eV, (b) Ec = 4.5 eV and (c) Ec = 5.0 eV. 
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Fig.S4 The opacity functions of the Ca+(2S) + H2 (v0 = 0, j0 = 0) → CaH+ + H reaction 

as the function of total angular momentum J at the selected collision energies (a) Ec = 

3.5 eV and (a) Ec = 4.0 eV calculated by the CC, CSA and ICSA methods. 
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Fig.S5 Comparison of ICSs between the CC, CSA, and ICSA over the collision 

energy range of 2.2-4.0 eV for the Ca+(2S) + H2 (v0 = 0, j0 = 0) → CaH+ + H reaction.  
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