Supplementary Information

Bipolar ferrimagnetic semiconductor and doping concentration induced carrier spin flip in monolayer NiMnBr₆

Chenchen Lou,^a Yujie Wang,^a Chunlan Ma^a and Jiayong Zhang^{*a}

^aJiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy

Application, School of Physical Science and Technology, Suzhou University of Science and

Technology, Suzhou, 215009, China

*Corresponding author: jyzhang@usts.edu.cn

Fig. S1 (a-d) The calculated phonon spectra for the monolayer $VMnBr_6$ (a), monolayer $CrMnBr_6$ (b), monolayer $FeMnBr_6$ (c), monolayer $CoMnBr_6$ (d).

Fig. S2 The energy differences (ΔE) between FM and FM state ($E_{FM} - E_{FM}$), FIM-Néel and FM state ($E_{FIM-Néel} - E_{FM}$), AF-Zigzag and FM state ($E_{AF-Zigzag} - E_{FM}$), and AF-Stripy and FM state ($E_{AF-stripy} - E_{FM}$) as a function of effective Hubbard U_{eff} (U_{eff} = U - J) for the monolayer NiMnBr₆. The energy differences (ΔE) obtained by using the HSE06 calculations are given in the dotted bordered rectangle.

Fig. S3 (a-c) The three possible distributions of the Mn atoms replacement with Ni atoms in a monolayer NiMnBr₆ rectangular supercell: G-1 (a), G-2 (b), and G-3 (c). (d-g) The four different magnetic configurations considered for the monolayer NiMnBr₆ rectangular supercell: FM (d), AF-Néel (e), AF-zigzag (f), and AF-stripy (g). Up and down spins are denoted by the red up and blue down arrows, respectively.

Table	SI	The	calcul	ated	total	ene	ergies	of	the	mor	nolay	er]	NiMn	Br ₆	rectar	igulai	r supe	rcell
(Ni ₂ M	n_2B	r ₁₂) ii	n G-1,	G-2,	and	G-3	atom	ic s	struct	ures	with	the	FM,	AF-	Néel,	AF-z	zigzag,	and
AF-sti	ipy	magn	etic co	nfigu	ratior	ıs.												

Ni ₂ Mn ₂ Br ₁₂	FM (eV)	AF-Neel (eV)	AF-zigzag (eV)	AF-stripy (eV)
G-1	-51.939409	-51.990853	-51.934098	-51.957870
G-2	-51.776044	-51.661059	-51.755106	-51.680767
G-3	-51.771654	-51.710440	-51.723194	-51.768831

Supporting Note 4

Fig. S4 (a-c) The calculated phonon spectra for the strain=-6.0% (a), strain=-4.0% (b), and strain=4.0% (c) monolayer NiMnBr₆. (d-f) The fluctuation of total energies of the strain=-6.0% (d), strain=-4.0% (e), and strain=4.0% (f) monolayer NiMnBr₆ system with respect to time during AIMD simulations at 500 K. The insets in (d-f) show the top and side views of atomic configuration snapshots from AIMD simulations after 5.0 ps.

Fig. S5 (a) The calculated MAEs with respect to strain (-8.0% to 8.0%) for monolayer NiMnBr₆ with the FM magnetic configuration. (b) The calculated MAEs with respect to strain (-8.0% to 8.0%) for monolayer NiMnBr₆ with the FIM-Néel magnetic configuration. (c) The calculated MAEs with respect to strain (-8.0% to 8.0%) for monolayer NiMnBr₆ with magnetic ground state.

Fig. S6 (a) The spin-polarized band structure of the 0.0% strained (strain=0.0%) monolayer NiMnBr₆. (b-d) The spin-polarized band structures of the strain=0.0% monolayer NiMnBr₆ with carrier doping concentration of 0.5 hole (b), 0.3 electron (c), and 0.6 electron (d) per unit cell. The red and blue curves denote the spin-up and spin-down bands, respectively. All the band structures are calculated by using the HSE06 functional.

Fig. S7 (a) The spin-polarized band structure of the 6.0% compressive strained (strain=-6.0%) monolayer NiMnBr₆. (b-d) The spin-polarized band structures of the strain=-6.0% monolayer NiMnBr₆ with carrier doping concentration of 0.5 electron (b), 0.2 hole (c), and 0.6 hole (d) per unit cell. The red and blue curves denote the spin-up and spin-down bands, respectively. All the band structures are calculated by using the HSE06 functional.