Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Electronic Supplementary Information

A Quantitative Thermodynamic Metric for Identifying Deep Eutectic Solvents

Bricker Like, Christina E. Uhlenbrock, and Matthew J. Panzer* Department of Chemical & Biological Engineering, Tufts University 4 Colby Street, Medford, MA 02155 USA

*<u>Email</u>: matthew.panzer@tufts.edu

I. Supplementary Discussion Regarding Higher Order Mixtures

Equations 1-3 presented in the main text (and reproduced here) conceptually define the dimensionless thermodynamic non-ideality metric g^E and express its value at the eutectic point in terms of the eutectic composition (with species mole fractions $x_{i,e}$), temperature (T_e), and approximated species activity coefficients ($\gamma_{i,e}$), the latter being obtained from a simplified solid-liquid mixture phase equilibrium criterion:

(1)
$$g^E = \Delta g_{mix} - \Delta g_{mix}^{ideal}$$

(2)
$$\frac{g^E}{RT_e} = \sum_i x_{i,e} \ln \gamma_{i,e}$$

(3)
$$\ln \gamma_{i,e} = \frac{\Delta h_{fus,i}}{R} \left(\frac{1}{T_{m,i}} - \frac{1}{T_e} \right) - \ln x_{i,e}$$

recalling that *R* is the universal gas constant, $\Delta h_{fus,i}$ is the enthalpy of fusion of pure species 'i', and $T_{m,i}$ is the melting temperature of pure species 'i'. Importantly, these equations are valid for mixtures containing any number of components *n*, not only binary mixtures (*n* = 2).

To illustrate how g^E/RT_e can be determined for higher order mixtures, two ternary "DES" mixtures that had been experimentally studied by Abranches et al.¹ were considered: betaine:urea:water, and ChCl:urea:water. The pure component properties for betaine, ChCl, and urea are shown in Table S1; for water, $T_{m,i} = 273$ K and $\Delta h_{fus,i} = 6.0$ kJ/mol. According to the findings of Abranches et al.,¹ the eutectic composition for the ternary betaine:urea:water is located at $x_{betaine} = 0.364$, $x_{urea} = 0.550$, and $x_{water} = 0.086$, with $T_e = 244.5$ K. Substitution of the relevant parameters and these values into Equations 2 and 3 yields a g^E/RT_e value of -2.52 for this mixture. Similarly, the eutectic point presented for the ternary ChCl:urea:water mixture ($x_{chCl} = 0.273$, $x_{urea} = 0.640$, and $x_{water} = 0.087$; $T_e = 295.4$ K) yields a g^E/RT_e value of -0.413. Both of these ternary systems meet the threshold for identifying a true DES presented in this work ($g^E/RT_e \leq -1/3$).

II. Supplementary Tables and Figures

Table S1. Summary of relevant thermodynamic parameters, reported eutectic point data, and
 literature references for each system analyzed in this work.

HBA	HBD	T _{m,HBA} [K]	∆ <i>h_{fus,HBA}</i> [kJ/mol]	T _{m,HBD} [K]	∆h _{fus,HBD} [kJ/mol]	x _e (HBA)	<i>T_e</i> [K]	Ref. #
betaine	camphor	566	17.98	450.4	5.28	0.3	383.8	2
betaine	coumarin	566	17.98	342.3	18.63	0.4	334.4	2
betaine	salicylic acid	566	17.98	432.5	23.05	0.3	383.6	2
betaine	thymol	566	17.98	323.5	19.65	0.25	258	2
betaine	urea	566	17.98	406.7	14.6	0.2	359.1	2
ChCl	2,3-xylenol	597	4.3	346.0	21.02	0.25	290.7	3
ChCl	caffeic acid	597	4.3	505.7	27.68	0.6667	340	4
ChCl	camphor	597	4.3	450.4	5.28	0.5	328.5	2
ChCl	citric acid	597	4.3	427.2	25.03	0.5	342	5
ChCl	coumarin	597	4.3	342.3	18.63	0.5	338.3	2
ChCl	D-fructose	597	4.3	466.4	22.77	0.667	283	6
ChCl	D-glucose	597	4.3	414.0	31.42	0.667	288	7
ChCl	ethylene glycol	597	4.3	260.6	9.9	0.1709	244	8
ChCl	gallic acid	597	4.3	641.0	30.96	0.667	350	4
ChCl	glycerol	597	4.3	293.0	18.28	0.333	237	9
ChCl	imidazole	597	4.3	361.9	12.82	0.3	329	10
ChCl	L-(+)-tartaric acid	597	4.3	448.0	18.62	0.667	320	4
ChCl	L-menthol	597	4.3	315.7	12.89	0.5	334.9	2
ChCl	malonic acid	597	4.3	407.5	23.1	0.5	283	5
ChCl	o-cresol	597	4.3	305.4	14.8	0.25	249	3
ChCl	oxalic acid	597	4.3	464.5	12.31	0.5	307	5
ChCl	p-coumaric acid	597	4.3	492.4	27.42	0.667	340	4
ChCl	phenylacetic acid	597	4.3	349.9	14.49	0.333	298	5
ChCl	phenylpropionic acid	597	4.3	321.2	15.61	0.333	293	5
ChCl	salicylic acid	597	4.3	432.5	23.05	0.5	340.4	5
ChCl	succinic acid	597	4.3	455.2	34.0	0.5	344	5
ChCl	trans-cinnamic acid	597	4.3	406.1	22.21	0.5	366	4
ChCl	urea	597	4.3	406.7	14.6	0.333	296.5	11
TBAB	imidazole	395	15.48	361.9	12.82	0.3	294	10
TBAC	ethylene glycol	344	14.69	260.6	9.9	0.25	242.1	12
TBAC	glycerol	344	14.69	293.0	18.28	0.1667	229.2	12
TBAC	triethylene glycol	344	14.69	263.8	21.85	0.75	260.3	12

HBA	HBD	g^E/RT_e	Υ _{ΗΒΑ}	Υ <i>hbd</i>	x ^{ideal} (HBA)	T ^{ideal} [K]	D _e	$\left x_{e}-x_{e}^{ideal} ight $
betaine	camphor	-0.105	0.543	1.119	0.186	393	-2.3	0.11
betaine	coumarin	-0.478	0.177	1.428	0.076	338.2	-1.1	0.32
betaine	salicylic acid	-0.506	0.542	0.631	0.247	414.2	-7.4	0.05
betaine	thymol	-1.969	0.042	0.209	0.054	321.1	-19.7	0.20
betaine	urea	-0.398	0.553	0.705	0.176	389.2	-7.7	0.02
ChCl	2,3-xylenol	-0.708	1.606	0.332	0.469	318.4	-8.7	0.22
ChCl	caffeic acid	-0.869	0.779	0.121	0.707	426.3	-20.2	0.04
ChCl	camphor	0.077	0.985	1.185	0.458	314	4.6	0.04
ChCl	citric acid	-0.507	1.048	0.346	0.604	377.5	-9.4	0.10
ChCl	coumarin	0.323	1.031	1.851	0.456	313.2	8.0	0.04
ChCl	D-fructose	-1.272	0.573	0.067	0.645	396.5	-28.6	0.02
ChCl	D-glucose	-1.314	0.592	0.055	0.601	376.1	-23.4	0.07
ChCl	ethylene glycol	-0.015	1.671	0.884	0.283	242.9	0.5	0.11
ChCl	gallic acid	-1.380	0.813	0.024	0.83	491.3	-28.8	0.16
ChCl	glycerol	-0.985	0.805	0.255	0.366	276.2	-14.2	0.03
ChCl	imidazole	0.101	1.646	0.933	0.463	315.9	4.1	0.16
ChCl	L-(+)-tartaric acid	-0.530	0.708	0.407	0.605	377.8	-15.3	0.06
ChCl	L-menthol	0.495	1.015	2.650	0.392	286.7	16.8	0.11
ChCl	malonic acid	-1.287	0.765	0.100	0.571	362.5	-21.9	0.07
ChCl	o-cresol	-0.731	1.192	0.356	0.381	282.2	-11.8	0.13
ChCl	oxalic acid	-0.534	0.882	0.390	0.578	365.6	-16.0	0.08
ChCl	p-coumaric acid	-0.800	0.779	0.149	0.692	418.8	-18.8	0.02
ChCl	phenylacetic acid	-0.232	1.259	0.630	0.453	312.1	-4.5	0.12
ChCl	phenylpropionic acid	-0.038	1.222	0.854	0.411	294.5	-0.5	0.08
ChCl	salicylic acid	-0.501	1.041	0.353	0.605	377.8	-9.9	0.11
ChCl	succinic acid	-1.077	1.058	0.110	0.665	405.8	-15.2	0.17
ChCl	trans-cinnamic acid	0.059	1.158	0.973	0.566	360.4	1.6	0.07
ChCl	urea	-0.727	1.248	0.301	0.533	345.8	-14.3	0.20
TBAB	imidazole	-0.564	0.660	0.534	0.371	326.4	-9.9	0.07
TBAC	ethylene glycol	-0.240	0.460	0.940	0.152	251.6	-3.8	0.10
TBAC	glycerol	-1.719	0.458	0.149	0.305	279.4	-18.0	0.14
TBAC	triethylene glycol	-0.709	0.256	3.505	0.183	258.5	0.7	0.57

Table S2. Summary of calculated thermodynamic metrics, activity coefficients, and ideal eutectic

 point data for each system analyzed in this work.

Figure S1. Schematic ideal solid-liquid phase diagrams of temperature versus composition (isobaric, at 1 bar) for two binary mixtures: (a) betaine:coumarin, (b) TBAC:triethylene glycol. Solid black curves indicate the liquidus boundary of the hypothetical ideal mixture, which converge at the ideal eutectic temperature (horizontal dashed black line). Solid red marker indicates the location of the experimentally measured eutectic point, according to literature reports.^{2, 12} Both mixtures exhibit a substantial shift in their eutectic composition versus that of the ideal cases, in addition to very small ΔT values.

Supplementary Notes and References

- 1. D. O. Abranches, L. P. Silva, M. A. R. Martins and J. A. P. Coutinho, *J. Chem. Phys.*, 2021, **155**, 034501.
- 2. D. O. Abranches, L. P. Silva, M. A. R. Martins, S. P. Pinho and J. A. P. Coutinho, *ChemSusChem*, 2020, **13**, 4916-4921.
- 3. W. J. Guo, Y. C. Hou, S. H. Ren, S. D. Tian and W. Z. Wu, *J Chem Eng Data*, 2013, **58**, 866-872.
- 4. Z. Maugeri and P. Domínguez de María, *RSC Adv.*, 2012, **2**, 421-425.
- 5. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies and R. K. Rasheed, *J. Am. Chem. Soc.*, 2004, **126**, 9142-9147.
- 6. A. Hayyan, F. S. Mjalli, I. M. AlNashef, T. Al-Wahaibi, Y. M. Al-Wahaibi and M. A. Hashim, *Thermochim. Acta*, 2012, **541**, 70-75.
- A. Hayyan, F. S. Mjalli, I. M. AlNashef, Y. M. Al-Wahaibi, T. Al-Wahaibi and M. A. Hashim, J. Mol. Liq., 2013, 178, 137-141.

- 8. V. Agieienko and R. Buchner, *Phys. Chem. Chem. Phys.*, 2022, **24**, 5265-5268.
- 9. K. Shahbaz, S. Baroutian, F. S. Mjalli, M. A. Hashim and I. M. AlNashef, *Thermochim. Acta*, 2012, **527**, 59-66.
- 10. Y. W. Hou, Y. Y. Gu, S. M. Zhang, F. Yang, H. M. Ding and Y. K. Shan, *J. Mol. Liq.*, 2008, **143**, 154-159.
- 11. X. Meng, K. Ballerat-Busserolles, P. Husson and J.-M. Andanson, *New J. Chem.*, 2016, **40**, 4492-4499.
- 12. F. S. Mjalli, J. Naser, B. Jibril, V. Alizadeh and Z. Gano, J. Chem. Eng. Data, 2014, **59**, 2242-2251.