NiPd co-doped nitrogen-coordinated graphene as a highefficiency electrocatalyst for oxygen reduction reaction: A first-principles determination

Kaiwen Huang,^a Weihua Yang,^a Lei Li,^{*b} Yameng Li,^a Rao Huang,^a Yuhua Wen ^{*a}

^a Department of Physics, Xiamen University, Xiamen 361005, China. E-mail: yhwen@xmu.edu.cn

^b College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China. E-mail: lilei@imnu.edu.cn

	5×5	10×5
$d_{ m Ni-N}(m \AA)$	1.848/1.841/1.950	1.848/1.840/1.950
$d_{ m Pd-N}(m \AA)$	1.924/1.998/2.003	1.924/1.998/2.003
$d_{ m Ni-Pd}(m \AA)$	2.241	2.241
Charge_Ni	-0.63	-0.63
Charge_Pd	-0.41	-0.41
Charge_T ₃	0.60	0.60
Charge_T ₄	1.20	1.20
Charge_T ₅	1.09	1.09
Charge_T ₆	1.07	1.07
Charge_T ₇	1.30	1.30
Charge_T ₈	0.71	0.71
	after O adsorption	
Charge_O	0.79	0.79
Charge_Ni Charge_Pd	-0.91	-0.91
Charge_T ₃	0.61	0.61
Charge_T ₄	1.21	1.21
Charge_T ₅	1.06	1.06
Charge_T ₆	0.66	0.66
Charge_T ₇	1.14	1.14
Charge_T ₈	0.61	0.61

Table S1 The Metal-N bond lengths (d_{M-N}) , the Ni-Pd bond lengths (d_{Ni-Pd}) and charges of each atom using different supercell sizes.

Table S2 The Metal-N bond lengths (d_{M-N}) vs. sum of covalent radii $(r_M + r_N)$ of the metal and N atoms, and the Ni-Pd bond lengths (d_{Ni-Pd}) vs. sum of covalent radii $(r_{Ni} + r_{Pd})$ of Ni and Pd atoms.

Model	$d_{\text{Ni-N}}(\text{\AA})$	$r_{\rm Ni} + r_{\rm N}(\rm \AA)$	$d_{\text{Pd-N}}(\text{\AA})$	$r_{\rm Pd} + r_{\rm N}(\rm \AA)$	$d_{\text{Ni-Pd}}(\text{\AA})$	$r_{\rm Ni} + r_{\rm Pd}(\rm \AA)$
NiPdN ₆ -G	1.88	1.95	1.98	2.10	2.24	2.63
NiN ₄ -G	1.88	1.95				
PdN ₄ -G			1.95	2.10		

Table S3 The formation energies $(E_{f1} \text{ and } E_{f2})$, standard dissolution potential standard dissolution potential $(U_{d\bar{s}ss}^{0})$, number of transferred electrons (N_e) during the dissolution, dissolution potential $(U_{d\bar{s}s})$, the binding energies (E_b) and the cohesive energy (E_{coh}) for each catalyst.

Model	$E_{\rm fl}({\rm eV})$.	$E_{\rm f2}(\rm eV)$		$U_{diss(V)}^{0}$		N_e		$U_{diss}(V)$		E _k (eV)	E., (eV)		
		Ni-PdN ₆	Pd-NiN ₆	Ni	Pd	Ni	Pd	Ni	Pd	20(01)			
NiPdN ₆ -G	-5.46	-6.12	-4.51	-0.26	0.95	2	2	2.80	3.21	-5.65	-5.19		
NiN ₄ -G	-4.45			-0.	26		2	1.	97	-8.21	-5.84		
PdN ₄ -G	-2.33			0.95		0.95			2	2.	12	-7.02	-4.54

D - 41	Decement	$\Delta G (eV)$						
Path	Process	*O ₂	*00H	*O+*OH	*OH+*OH	*0	*OH	η(ν)
1	$1 \rightarrow 2_i(B) \rightarrow 3(up) \rightarrow 4(up)$	4.36	4.06			1.83	1.00	0.40
2	$1 \rightarrow 2_i(B) \rightarrow 3(\text{down}) \rightarrow 4(\text{down})$	4.36	4.06			1.83	0.98	0.38
3	$1 \rightarrow 0(T_2) \rightarrow 2_{ii}(T_2) \rightarrow 3(up) \rightarrow 4(up)$	4.36	4.06	3.83		1.83	1.00	0.40
4	$1 \rightarrow 0(T_2) \rightarrow 2_{ii}(T_2) \rightarrow 3(\text{down}) \rightarrow 4(\text{down})$	4.36	4.06	3.83		1.83	0.98	0.38
5	$1 \rightarrow 0(T_2) \rightarrow 2'ii(T_2) \rightarrow 3'(T_2) \rightarrow 4(up)$	4.36	4.06	3.83	2.71		1.00	0.37
6	$1 \rightarrow^{2} iii(T_2) \rightarrow^{3'}(T_2) \rightarrow 4(up)$	4.36	4.06		2.71		1.00	0.37
7	$1 \rightarrow 0(T_3) \rightarrow 2_{ii}(T_3) \rightarrow 3(up) \rightarrow 4(up)$	4.36	4.06	4.24		1.83	1.00	0.40
8	$1 \rightarrow 0(T_3) \rightarrow 2_{ii}(T_3) \rightarrow 3(\text{down}) \rightarrow 4(\text{down})$	4.36	4.06	4.24		1.83	0.98	0.38
9	$1 \rightarrow 0(T_3) \rightarrow 2'ii(T_3) \rightarrow 3'(T_3) \rightarrow 4(up)$	4.36	4.06	4.24	3.30		0.98	0.37
10	$1 \rightarrow 2iii(T_3) \rightarrow 3'(T_3) \rightarrow 4(up)$	4.36	4.06		3.30		0.98	0.47
11	$1 \rightarrow 0(T_8) \rightarrow 2_{ii}(T_8) \rightarrow 3(up) \rightarrow 4(up)$	4.36	4.06	4.22		1.83	1.00	0.40
12	$1 \rightarrow 0(T_8) \rightarrow 2_{ii}(T_8) \rightarrow 3(\text{down}) \rightarrow 4(\text{down})$	4.36	4.06	4.22		1.83	0.98	0.38
13	$1 \rightarrow 0(T_8) \rightarrow 2'ii(T_8) \rightarrow 3'(T_8) \rightarrow 4(up)$	4.36	4.06	4.22	3.37		0.98	0.38
14	$1 \rightarrow 2iii(T_8) \rightarrow 3'(T_8) \rightarrow 4(up)$	4.36	4.06		3.37		0.98	0.54

Table S4 The free-energy (ΔG) for the different reaction intermediates and the overpotential (η) for all possible ORR pathways on NiPdN₆-G.

Table S5 The total energy (ΔE), the changes of the zero-point energy (ΔZPE), the temperature T and the changes of entropy (ΔS) of each system calculated by DFT in free-energy (ΔG) calculation.

	ΔE	ΔZPE - $T\Delta S$	$\Delta G (U=0)$
*O ₂	-440.158	0.003	4.36
*OOH	-444.211	0.341	4.06
$O(B) + OH(T_2)$	-444.298	0.204	3.83
$O(B) + OH^{*}(T_{3})$	-444.121	0.431	4.24
$O(B) + OH(T_8)$	-444.136	0.434	4.22
$*OH(B)+*OH(T_2)$	-449.260	0.641	2.71
$*OH(B)+*OH(T_3)$	-448.699	0.667	3.30
$OH(B)+OH(T_8)$	-448.668	0.707	3.37
*O	-435.348	0.071	1.83
*OH (up)	-439.852	0.334	1.00
*OH (down)	-439.988	0.460	0.98

Fig. S1 Calculated total energies of NiPdN₆-G using different energy cutoff values.

Fig. S2 Calculated total energies of NiPdN₆-G using different *k*-point meshes.

Fig. S3 The electron location functions (EFLs) for (a) NiPdN₆-G, (b) NiN₄-G and (c) PdN₄-G. Blue, yellow and orange spheres represent N, Ni and Pd atoms, respectively. Scale bar: ELF = 0, 0.5, and 1, corresponding to no electron (blue), the electron gas (green), and perfect electron (red), respectively.

Fig. S4 Total DOS, projected Ni-3*d*, Pd-3*d* and N-2*p* states, and the metal *d*-band centers (ε_d) calculated from both spin up and spin down states of (a) NiPdN₆-G, (b) NiN₄-G and (c) PdN₄-G. Fermi level is set at 0 eV.

Fig. S5 (a) The charge density difference plot and (b) calculated Bader charges for

NiPdN₆-G catalyst. Yellow and cyan bubbles indicate electron accumulation and depletion, respectively. Blue, yellow and orange spheres represent N, Ni and Pd atoms, respectively. The '+' and '-' denote the gained and lost charges, respectively.

Fig. S6 The energy curve of NiPdN₆ structure is simulated *via* AIMD at 500 K, and the top-view and side-view of NiPdN₆ structure are both obtained at 10 ps.

Fig. S7 The optimized structures of (a) NiN₄-G and (b) PdN₄-G. Grey, blue, yellow and orange spheres represent C, N, Ni and Pd atoms, respectively.

Fig. S8 Atomic structures of IS, TS, and FS for each step of ORR on $NiPdN_6$ -G. The TS structures are marked by dashed boxes. Grey, blue, yellow, orange, red and green spheres represent C, N, Ni, Pd, O and H atoms, respectively.

Fig. S9 Free-energy diagrams for ORR on NiPdN₆-G in (a) paths 1 and 2; (b) paths 3 and 4; (c) path 5; (d) paths 10 and 14.

The formation energy (E_{fl}) for evaluating the structural stability, was calculated by the following equation

$$E_{\rm f_l} = E_{\rm NiPdN_6-G} - E_{\rm Ni} - E_{\rm Pd} - 6\mu_{\rm N} - 40\mu_{\rm C}$$
 MERGEFORMAT

(S1)

or

$$E_{f_1} = E_{MN_4-G} - E_M - 4\mu_N - 44\mu_C \ MERGEFORMAT (S2)$$

Where ${}^{E_{\text{NiPdN}_6}-G}$ is the total energy of NiPdN₆-G DAC, while ${}^{E_{MN_4}-G}$ is the total energy of NiN₄-G or PdN₄-G SAC. E_{Ni} and E_{Pd} are the energies of isolated Ni and Pd atoms in vacuum, and E_{M} takes above value as appropriate. The chemical potentials of C and N atoms are denoted as μ_{C} and μ_{N} , which are derived from nitrogen gas and pristine graphene.

Besides E_{f1} , the formation energy (E_{f2}) was also calculated to evaluate the thermodynamic for NiPdN₆-G, as following equation

$$E_{f_{Ni}} = E_{NiPdN_6-G} - E_{PdN_6-G} - E_{Ni} \setminus MERGEFORMAT (S3)$$

and

$$E_{f_{p_d}} = E_{NiPdN_6-G} - E_{NiN_6-G} - E_{Pd} \setminus MERGEFORMAT (S4)$$

where E_{f_2-Ni} and E_{f_2-Pd} are the total energy of single Ni or Pd atom doped N-coordinated graphene.

The dissolution potential (U_{diss}) were also used to evaluate the electrochemical stabilities using the follow equation

$$U_{\text{diss}} = U_{\text{diss}}^{0}(metal, bulk) - \frac{E_{f_{2}}}{eN_{e}}$$
 * MERGEFORMAT (S5)

Where $U_{diss}^{0}(metal,bulk)$ is the standard dissolution potential of bulk metal, N_e is the number of electrons during the dissolution, respectively.

The binding energy (E_b) between two metal atoms and substrate, and the cohesive energy (E_{coh}) were calculated respectively using the following equations

$$E_{\rm b} = \frac{E_{\rm NiPdN_6-G} - E_{\rm Ni} - E_{\rm Pd} - E_{\rm N_6-G}}{2} \ \text{`* MERGEFORMAT (S6)}$$

$$E_{\rm b} = E_{\rm MN_4-G} - E_{\rm M} - E_{\rm N_4-G}$$
 * MERGEFORMAT (S7)

and

$$E_{\rm coh} = \frac{E_{\rm Ni(bulk)} + E_{\rm Pd(bulk)} - E_{\rm Ni} - E_{\rm Pd}}{2} \times \text{MERGEFORMAT (S8)}$$
$$E_{\rm coh} = E_{\rm M(bulk)} - E_{\rm M} \times \text{MERGEFORMAT (S9)}$$

The charge density difference plots were calculated using the following equation:

$$\Delta \rho(r) = \rho(r)_{\text{NiPdN}_{6}-\text{G}} - \rho(r)_{\text{Ni+Pd}} - \rho(r)_{\text{N}_{6}-\text{G}}$$

where $\rho(r)_{\text{NiPdN}_6}$ is the charge density of NiPdN₆-G catalyst. $\rho(r)_{\text{Ni}+\text{Pd}}$ is the charge densities of Ni and Pd atoms. $\rho(r)_{\text{N}_6}$ is the charge density of the N-doped graphene.

References

- 1. W. Chen, J. Huang, J. Wei, D. Zhou, J. Cai, Z. D. He and Y. X. Chen, *Electrochem. Commun.*, 2018, **96**, 71-76.
- 2. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, *Appl. Catal.*, *B*, 2005, **56**, 9-35.