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1. Machine learning setup

For training the machine learning (ML) models, we employed the sklearn v1.1.31 

implementations of Gradient-Boosting, Random-Forest and Kernel-Ridge-Regression. In 

addition, we used Gradient Boosting as implemented in xgboost v1.7.3.2 Models were trained 

on the task of predicting the adsorption energy based on the initial system. For every 

modeling option, five different 80/20-train-test-splits were chosen (stratified by adsorbents, as 

well as selecting single adsorbents) and models were built on the training set with 5-fold 

cross-validation (nested cross-validation). Tabular features were created with 

JARVIS/matminer3 and scaled with sklearn’s StandardScaler. For SOAP-featurization we 

used the implementation in the DScribe-library v1.2.2.4 To featurize the system, we created a 

global fingerprint for the 2D-Mg and a local fingerprint around the adsorbent C-atom, with a 

dummy-atom placed at the surface-origin of a surface-normal running through the C-atom. 

Both were concatenated and fed to the model. Consult our code shared at 

https://github.com/ThomasSiby/Gas_adsorption_on_2D_materials for more details.                                                                                                                                            

2. Machine learning metrics

To assess the performance of the ML models, different loss functions and metrics such as 

mean absolute error (MAE) and coefficient of determination (R2) are used and are evaluated 

using the relation:  
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Fig. S1. Pearson’s correlation heatmap for the final reduced set of descriptors. The descriptors 

represent the properties of host 2D-Mg and guest gas molecules. The strength of the 

correlation is analyzed using the color code associated with the correlation matrix. Here, ivory 

and black denote high and low correlations between the descriptors. 
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Fig. S2. Phonon dispersion relation of 2D-Mg obtained using the finite displacement method 

indicating the dynamical stability in the absence of imaginary modes.  

Fig. S3. The electronic band structure of (a) PR, (b) MV, (c) DV1, and (d) DV2 structures 

along the high-symmetric path Γ-M-K-Γ using PBE functional. The horizontal red dashed line 

represents the Fermi level and is set to 0 eV.
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Fig. S4. The total and projected density of states (DOS) of (a) PR, (b) MV, (c) DV1, and (d) 

DV2 structures were computed using the HSE06 functional. The red dashed vertical line 

stands for the Fermi level, which is fixed at 0 eV.



 S6

Fig. S5. The electron localization function (ELF) maps of (a) PR, (b) MV, (c) DV1, and (d) 

DV2 structures with a slice crossing the structural plane. Red in the scaling bar denotes that 

electrons are highly localized, and blue indicates that electrons are without any localization.
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Fig. S6. Computed adsorption energy of CO, CO2 and CH4 gas molecules placed at different 

locations of pristine and defective 2D-Mg.

Fig. S7. Adsorption energy versus charge analysis for pristine and defective 2D-Mg with the 

presence of CO, CO2 and CH4 gas molecules.  
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Fig. S8. Calculated electronic band structures of pristine and defective 2D-Mg when CO, CO2 

and CH4 gas molecules are adsorbed on the surface. The band structures are computed using 

the PBC functional and the horizontal black dashed line represents the Fermi level.
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Fig. S9. Parity plots for cross-validated models with different train-test-splits, as run to get a 

perception of the actual, expected prediction performance (see Table 5, nested cross-

validation in the Manuscript). The stated values above the plot show scores for both the 

testing set as well as the training set in parentheses. The given images show five different 

Random Forest models using SOAP featurization.
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Fig. S10. Parity plots for cross-validated models with different train-test-splits, as run to get a 

perception of the actual, expected prediction performance (see Table 5, nested cross-

validation in the Manuscript). The stated values above show scores for both the testing set as 

well as the training set in parentheses. In addition to the parity plot, distributions of true and 

predicted values are shown color-coded by the adsorbent species. The given images show five 

different Random Forest models using the statistical features.
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