Supplementary Information

Yuta Kaneko and Klaus S. Lackner
School of Sustainable Engineering \& the Built Environment Arizona State University

Chapter 1

Derivation of α, β and γ

The condition of charge neutrality is:

$$
\begin{equation*}
\left[\mathrm{A}_{\mathrm{eff}}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right] \tag{1.1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left[\mathrm{A}_{\mathrm{eff}}\right] \equiv\left[\mathrm{NH}_{4}^{+}\right]-\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]+\left[\mathrm{A}_{\mathrm{res}}\right] \tag{1.2}
\end{equation*}
$$

On the other hand, the mass conservation of nitrogen demands:

$$
\begin{equation*}
[\mathrm{N}]=[\mathrm{RNHCOOH}]+\left[\mathrm{RNHCOO}^{-}\right]+\left[\mathrm{NH}_{3}\right]+\left[\mathrm{NH}_{4}^{+}\right] \tag{1.3}
\end{equation*}
$$

Substituting the mass action laws into Eq.(1.3) yields:

$$
\begin{align*}
{[\mathrm{N}] } & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}} K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right] \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]^{2}}{K_{b}}+\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}}+\left[\mathrm{NH}_{4}^{+}\right] \tag{1.4}\\
& =\frac{\left[\mathrm{NH}_{4}^{+}\right]}{K_{b}}\left(K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{OH}^{-}\right] K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}\right) \tag{1.5}
\end{align*}
$$

Therefore, once $\left[\mathrm{OH}^{-}\right]$and $P_{\mathrm{CO}_{2}}\left(\right.$ or $\left.\left[\mathrm{CO}_{2}\right]\right)$ are given, $\left[\mathrm{NH}_{4}^{+}\right]$can be calculated as:

$$
\begin{equation*}
\left[\mathrm{NH}_{4}^{+}\right]=\frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{OH}^{-}\right] K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}} \tag{1.6}
\end{equation*}
$$

$\left[\mathrm{NH}_{3}\right],[\mathrm{RNHCOOH}]$ and $\left[\mathrm{RNHCOO}{ }^{-}\right]$can be calculated subsequently as:

$$
\begin{align*}
{\left[\mathrm{NH}_{3}\right] } & =\left[\mathrm{NH}_{4}^{+}\right] \times \frac{\left[\mathrm{OH}^{-}\right]}{K_{b}} \tag{1.7}\\
{[\mathrm{RNHCOOH}] } & =\left[\mathrm{NH}_{3}\right] \times K_{X}\left[\mathrm{CO}_{2}\right] \tag{1.8}\\
{\left[\mathrm{RNHCOO}^{-}\right] } & =\left[\mathrm{RNHCOOH}^{2}\right] \times K_{Y}\left[\mathrm{OH}^{-}\right] \tag{1.9}
\end{align*}
$$

Once $\left[\mathrm{OH}^{-}\right]$and $P_{\mathrm{CO}_{2}}\left(\right.$ or $\left.\left[\mathrm{CO}_{2}\right]\right)$ are given, $\left[\mathrm{HCO}_{3}^{-}\right]$and $\left[\mathrm{CO}_{3}^{2-}\right]$ can be subsequently calculated as:

$$
\begin{align*}
{\left[\mathrm{HCO}_{3}^{-}\right] } & =K_{1}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right] \tag{1.10}\\
{\left[\mathrm{CO}_{3}^{2-}\right] } & =\left[\mathrm{HCO}_{3}^{-}\right] \times K_{2}\left[\mathrm{OH}^{-}\right] \tag{1.11}
\end{align*}
$$

Substituting the mass action laws and Eq.(1.6) into Eq.(1.1) yields:

$$
\begin{align*}
& {\left[\mathrm{H}^{+}\right]+\left[\mathrm{A}_{\mathrm{res}}\right]+\frac{[\mathrm{N}]\left(K_{b}-K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}\right)}{K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{CO}_{2}\right]\left(K_{X}\left[\mathrm{OH}^{-}\right]+K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\right)} } \\
= & {\left[\mathrm{CO}_{2}\right]\left(K_{1}\left[\mathrm{OH}^{-}\right]+2 K_{1} K_{2}\left[\mathrm{OH}^{-}\right]^{2}\right)+\left[\mathrm{OH}^{-}\right] } \tag{1.12}
\end{align*}
$$

Since $\left[\mathrm{H}^{+}\right]$is negligible in our area of interest, Eq.(1.12) simplifies to:

$$
\begin{align*}
& {\left[\mathrm{A}_{\mathrm{res}}\right]+\frac{[\mathrm{N}]\left(K_{b}-K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}\right)}{K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{CO}_{2}\right]\left(K_{X}\left[\mathrm{OH}^{-}\right]+K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\right)} } \\
= & {\left[\mathrm{CO}_{2}\right]\left(K_{1}\left[\mathrm{OH}^{-}\right]+2 K_{1} K_{2}\left[\mathrm{OH}^{-}\right]^{2}\right)+\left[\mathrm{OH}^{-}\right] } \tag{1.13}
\end{align*}
$$

Eq.(1.13) is a quadratic equation for $\left[\mathrm{CO}_{2}\right]$ and thus $\left[\mathrm{CO}_{2}\right]$ can be explicitly expressed as function of only one variable, $\left[\mathrm{OH}^{-}\right]$, as:

$$
\begin{align*}
{\left[\mathrm{CO}_{2}\right]=f\left(\left[\mathrm{OH}^{-}\right]\right) } & \equiv \frac{-\beta+\sqrt{\beta^{2}-4 \alpha \gamma}}{2 \alpha} \tag{1.14}\\
& =\frac{\beta}{2 \alpha}\left(\sqrt{1-\frac{4 \alpha \gamma}{\beta^{2}}}-1\right) \tag{1.15}
\end{align*}
$$

where,

$$
\begin{align*}
\alpha= & \left(K_{X}\left[\mathrm{OH}^{-}\right]+K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\right)\left(K_{1}\left[\mathrm{OH}^{-}\right]+2 K_{1} K_{2}\left[\mathrm{OH}^{-}\right]^{2}\right) \tag{1.16}\\
= & {\left[\mathrm{OH}^{-}\right]^{4} 2 K_{X} K_{Y} K_{1} K_{2} } \\
& +\left[\mathrm{OH}^{-}\right]^{3} K_{X} K_{1}\left(K_{Y}+2 K_{2}\right) \\
& +\left[\mathrm{OH}^{-}\right]^{2} K_{X} K_{1} \\
\beta= & \left(K_{b}+\left[\mathrm{OH}^{-}\right]\left(K_{1}\left[\mathrm{OH}^{-}\right]+2 K_{1} K_{2}\left[\mathrm{OH}^{-}\right]^{2}\right)\right. \tag{1.17}\\
& +\left[\mathrm{OH}^{-}\right]\left(K_{X}\left[\mathrm{OH}^{-}\right]+K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\right) \\
& +K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}[\mathrm{~N}] \\
& -K_{X}\left[\mathrm{OH}^{-}\right]\left[\mathrm{A}_{\mathrm{res}}\right]-K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\left[\mathrm{~A}_{\mathrm{res}}\right] \tag{1.18}\\
= & {\left[\mathrm{OH}^{-}\right]^{3}\left(2 K_{1} K_{2}+K_{X} K_{Y}\right) } \\
& +\left[\mathrm{OH}^{-}\right]^{2}\left(K_{1}+2 K_{b} K_{1} K_{2}+K_{X}+K_{X} K_{Y}\left([\mathrm{~N}]-\left[\mathrm{A}_{\mathrm{res}}\right]\right)\right. \\
& +\left[\mathrm{OH}^{-}\right]\left(K_{b} K_{1}-K_{X}\left[\mathrm{~A}_{\mathrm{res}}\right]\right) \tag{1.19}\\
\gamma= & {\left[\mathrm{OH}^{-}\right]^{2}+\left[\mathrm{OH}^{-}\right]\left(K_{b}-\left[\mathrm{A}_{\mathrm{res}}\right]\right)-K_{b}\left([\mathrm{~N}]+\left[\mathrm{A}_{\mathrm{res}}\right]\right) } \tag{1.20}
\end{align*}
$$

If we assume $\left[\mathrm{A}_{\text {residual }}\right]=0, \beta$ and γ simplify to:

$$
\begin{align*}
\beta= & \left(K_{b}+\left[\mathrm{OH}^{-}\right]\right)\left(K_{1}\left[\mathrm{OH}^{-}\right]+2 K_{1} K_{2}\left[\mathrm{OH}^{-}\right]^{2}\right) \\
& +\left[\mathrm{OH}^{-}\right]\left(K_{X}\left[\mathrm{OH}^{-}\right]+K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}\right) \\
& +K_{X} K_{Y}\left[\mathrm{OH}^{-}\right]^{2}[\mathrm{~N}] \tag{1.21}\\
= & {\left[\mathrm{OH}^{-}\right]^{3}\left(2 K_{1} K_{2}+K_{X} K_{Y}\right) } \\
& +\left[\mathrm{OH}^{-}\right]^{2}\left(K_{1}+2 K_{b} K_{1} K_{2}+K_{X}+K_{X} K_{Y}[\mathrm{~N}]\right) \\
& +\left[\mathrm{OH}^{-}\right] K_{b} K_{1} \tag{1.22}\\
\gamma= & {\left[\mathrm{OH}^{-}\right]^{2}+K_{b}\left[\mathrm{OH}^{-}\right]-K_{b}[\mathrm{~N}] } \tag{1.23}
\end{align*}
$$

Note that the other root of Eq.(1.13) always takes a negative value and thus does not make physical sense.
$\left[\mathrm{CO}_{2}\right]$ becomes zero when $\gamma=0$, in other words, when the $\left[\mathrm{OH}^{-}\right]_{\max }$ satisfies the following equation:

$$
\begin{equation*}
\left[\mathrm{OH}^{-}\right]_{\max }^{2}+K_{b}\left[\mathrm{OH}^{-}\right]_{\max }-K_{b}[\mathrm{~N}]=0 \tag{1.24}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left[\mathrm{OH}^{-}\right]_{\max }=\frac{K_{b}}{2}\left(\sqrt{1+\frac{4[\mathrm{~N}]}{K_{b}}}-1\right) \tag{1.25}
\end{equation*}
$$

If $\left[\mathrm{OH}^{-}\right]$exceeds $\left[\mathrm{OH}^{-}\right]_{\max }$, it results in $\left[\mathrm{CO}_{2}\right]<0$. Since $\left[\mathrm{CO}_{2}\right]$ needs to be positive, $\left[\mathrm{OH}^{-}\right]_{\text {max }}$ set the maximum pH of this system.

Conversely, $\left[\mathrm{OH}^{-}\right]$can be implicitly expressed as function of only one variable, $\left[\mathrm{CO}_{2}\right]$, as:

$$
\begin{equation*}
\left[\mathrm{OH}^{-}\right]=f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right) \tag{1.26}
\end{equation*}
$$

By substituting Eq.(1.26) into Eq.(1.6), $\left[\mathrm{NH}_{4}^{+}\right]$can be implicitly expressed as function of only one variable, $\left[\mathrm{CO}_{2}\right]$, as:

$$
\begin{align*}
{\left[\mathrm{NH}_{4}^{+}\right] } & =\frac{K_{b}[\mathrm{~N}]}{K_{b}+f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)+f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right) K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left(f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)^{2}\right.} \tag{1.27}\\
& \equiv g\left(\left[\mathrm{CO}_{2}\right]\right) \tag{1.28}
\end{align*}
$$

Therefore, the effective alkalinity $\left[\mathrm{A}_{\text {eff }}\right]$, can be expressed as:

$$
\begin{equation*}
\left[\mathrm{A}_{\mathrm{eff}}\right]=g\left(\left[\mathrm{CO}_{2}\right]\right) \times\left(1-\frac{K_{X} K_{Y}}{K_{b}}\left[\mathrm{CO}_{2}\right]\left\{f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)\right\}^{2}\right) \tag{1.29}
\end{equation*}
$$

The CO_{2} loading status θ can be defined as:

$$
\begin{equation*}
\theta \equiv \theta_{\mathrm{DOC}}+\theta_{\mathrm{DIC}} \tag{1.30}
\end{equation*}
$$

where,

$$
\begin{align*}
\theta_{\mathrm{DOC}} & \equiv \frac{[\mathrm{DOC}]}{[\mathrm{N}]} \tag{1.31}\\
\theta_{\mathrm{DIC}} & \equiv \frac{[\mathrm{DIC}]}{[\mathrm{N}]} \tag{1.32}
\end{align*}
$$

Note that DOC and DIC represent Dissolved Organic Carbon and Dissolved Inorganic Carbon, respectively, which are defined as:

$$
\begin{align*}
{[\mathrm{DOC}] } & \equiv\left[\mathrm{NH}_{2} \mathrm{COOH}\right]+\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right] \tag{1.33}\\
{[\mathrm{DIC}] } & \equiv\left[\mathrm{CO}_{2}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right] \tag{1.34}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\theta= & \frac{K_{X}}{K_{b}[\mathrm{~N}]} g\left(\left[\mathrm{CO}_{2}\right]\right)\left[\mathrm{CO}_{2}\right] f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)\left(1+K_{Y} f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)\right) \\
& +\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{N}]}\left(1+K_{1} f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)+K_{1} K_{2}\left\{f^{-1}\left(\left[\mathrm{CO}_{2}\right]\right)\right\}^{2}\right) \tag{1.35}
\end{align*}
$$

Chapter 2

Small $\left[\mathrm{OH}^{-}\right]$limit

In this limit of $\left[\mathrm{CO}_{2}\right] \rightarrow \infty$ (in other words, in the limit of $\left[\mathrm{OH}^{-}\right] \rightarrow 0$),

$$
\begin{align*}
\alpha & =K_{1} K_{X}\left[\mathrm{OH}^{-}\right]^{2}+o\left(\left[\mathrm{OH}^{-}\right]^{2}\right) \quad \text { as }\left[\mathrm{OH}^{-}\right] \rightarrow 0 \tag{2.1}\\
\beta & =K_{b} K_{1}\left[\mathrm{OH}^{-}\right]+o\left(\left[\mathrm{OH}^{-}\right]\right) \quad \text { as }\left[\mathrm{OH}^{-}\right] \rightarrow 0 \tag{2.2}\\
\gamma & =-K_{b}[\mathrm{~N}]+o(1) \quad \text { as }\left[\mathrm{OH}^{-}\right] \rightarrow 0 \tag{2.3}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\frac{\beta}{2 \alpha} & =\frac{K_{b}+o(1)}{2 K_{X}\left[\mathrm{OH}^{-}\right]+o\left(\left[\mathrm{OH}^{-}\right]\right)} \quad \text { as }\left[\mathrm{OH}^{-}\right] \rightarrow 0 \tag{2.5}\\
\frac{4 \alpha \gamma}{\beta^{2}} & =-\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}+o(1) \quad \text { as }\left[\mathrm{OH}^{-}\right] \rightarrow 0 \tag{2.6}
\end{align*}
$$

Note that the o-notation is used to indicate the order of a function and to describe the asymptotic behavior of a function. Assuming $\phi(x) \neq 0$ for all $x \neq a$ in some interval containing a, the notation

$$
\begin{equation*}
\psi(x)=o(\phi(x)) \quad \text { as } x \rightarrow a \tag{2.8}
\end{equation*}
$$

means that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{\psi(x)}{\phi(x)}=0 \tag{2.9}
\end{equation*}
$$

Substituting Eq.(2.5) and Eq.(2.6) into Eq.(1.15) yields:

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right] \sim \frac{K_{b}}{2 K_{X}\left[\mathrm{OH}^{-}\right]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.10}
\end{equation*}
$$

Substituting Eq.(2.10) into Eq.(1.6) yields

$$
\begin{align*}
{\left[\mathrm{NH}_{4}^{+}\right] } & \sim \frac{2[\mathrm{~N}]}{\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}+1} \tag{2.12}\\
& =\frac{K_{b} K_{1}}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.13}
\end{align*}
$$

Therefore, the effective alkalinity in this limit is

$$
\begin{align*}
{\left[\mathrm{A}_{\mathrm{eff}}\right] } & =\left[\mathrm{NH}_{4}^{+}\right]\left(1-\frac{K_{X} K_{Y}}{K_{b}}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}\right) \tag{2.14}\\
& \sim\left[\mathrm{NH}_{4}^{+}\right] \tag{2.15}\\
& \sim \frac{2[\mathrm{~N}]}{\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}+1}} \tag{2.16}\\
& =\frac{K_{b} K_{1}}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.17}
\end{align*}
$$

$\left[\mathrm{NH}_{2} \mathrm{COOH}\right]$ in this limit is

$$
\begin{align*}
{\left[\mathrm{NH}_{2} \mathrm{COOH}\right] } & =K_{X}\left[\mathrm{CO}_{2}\right] \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}} \tag{2.18}\\
& \sim K_{X} \frac{K_{k}}{2 K_{X}[\mathrm{OH}]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \frac{\left[\mathrm{NH}_{4}^{+}\right][\mathrm{OH}]}{K_{k}} \tag{2.19}\\
& =\frac{\left[\mathrm{NH}_{4}^{+}\right]}{2}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.20}\\
& =[\mathrm{N}] \frac{\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right)}{\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}+1\right)} \tag{2.21}\\
& =\frac{K_{b} K_{1}}{4 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right)^{2} \tag{2.22}
\end{align*}
$$

$\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]$in this limit is

$$
\begin{align*}
{\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right] } & =K_{Y}\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{2} \mathrm{COOH}\right] \tag{2.23}\\
& \sim \frac{K_{b} K_{1} K_{Y}\left[\mathrm{OH}^{-}\right]}{4 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right)^{2} \tag{2.24}
\end{align*}
$$

Therefore, θ_{DOC} in this limit is

$$
\begin{align*}
\theta_{\mathrm{DOC}} & \sim \frac{\left[\mathrm{NH}_{2} \mathrm{COOH}\right]}{[\mathrm{N}]} \tag{2.25}\\
& \sim \frac{\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right)}{\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}+1\right)} \tag{2.26}\\
& =\frac{K_{b} K_{1}}{4 K_{X}[\mathrm{~N}]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right)^{2} \tag{2.27}
\end{align*}
$$

$\left[\mathrm{NH}_{3}\right]$ in this limit is

$$
\begin{align*}
{\left[\mathrm{NH}_{3}\right] } & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}} \tag{2.28}\\
& \sim \frac{\left[\mathrm{OH}^{-}\right]}{K_{b}} \frac{\not K_{b} K_{1}}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.29}\\
& =\frac{K_{1}\left[\mathrm{OH}^{-}\right]}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.30}
\end{align*}
$$

$\left[\mathrm{HCO}_{3}^{-}\right]$in this limit is

$$
\begin{align*}
{\left[\mathrm{HCO}_{3}^{-}\right] } & =K_{1}\left[\mathrm{OH}^{-}\right]\left[\mathrm{CO}_{2}\right] \tag{2.31}\\
& \sim K_{1}[\mathrm{OH}] \frac{K_{b}}{2 K_{X}[\mathrm{OH}]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.32}\\
& =\frac{K_{b} K_{1}}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.33}\\
& \sim\left[\mathrm{NH}_{4}^{+}\right] \tag{2.34}
\end{align*}
$$

$\left[\mathrm{CO}_{3}^{2-}\right]$ in this limit is

$$
\begin{align*}
{\left[\mathrm{CO}_{3}^{2-}\right] } & =K_{2}\left[\mathrm{OH}^{-}\right]\left[\mathrm{HCO}_{3}^{-}\right] \tag{2.35}\\
& \sim \frac{K_{b} K_{1} K_{2}\left[\mathrm{OH}^{-}\right]}{2 K_{X}}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.36}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\theta_{\mathrm{DICI}} & \sim \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{[\mathrm{N}]} \tag{2.37}\\
& \sim \frac{K_{b} K_{1}}{2 K_{X}[\mathrm{~N}]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.38}
\end{align*}
$$

One can confirm that $\theta_{\mathrm{DICI}}+\theta_{\mathrm{DOC}}=1$ is satisfied in this limit as follows:

$$
\begin{align*}
\theta_{\mathrm{DICI}}+\theta_{\mathrm{DOC}} \sim & \frac{K_{b} K_{1}}{4 K_{X}[\mathrm{~N}]}\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1\right) \tag{2.39}\\
& \times\left(\sqrt{1+\frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}}}-1+2\right) \tag{2.40}\\
= & \frac{K_{b} K_{1}}{4 K_{X}[\mathrm{~N}]} \frac{4 K_{X}[\mathrm{~N}]}{K_{b} K_{1}} \tag{2.41}\\
= & 1 \tag{2.42}
\end{align*}
$$

These mean that this model reduces to the isotherm model of alkaline aqueous solutions in a hydroxide-carbonate-bicarbonate system with a constant alkalinity of $[\mathrm{N}]$.

Chapter 3

Physical large $\left[\mathrm{OH}^{-}\right]$limit

Mathematically, we can take the limit of $\left[\mathrm{OH}^{-}\right] \rightarrow \infty$. However, $\left[\mathrm{CO}_{2}\right]$ turns negative when $\left[\mathrm{OH}^{-}\right]$is larger than a certain value, $\left[\mathrm{OH}^{-}\right]_{\text {max }}$, which is defined as:

$$
\begin{equation*}
\left[\mathrm{OH}^{-}\right]_{\max }=\frac{K_{b}}{2}\left(\sqrt{1+\frac{4[\mathrm{~N}]}{K_{b}}}-1\right) \tag{3.1}
\end{equation*}
$$

Therefore, the upper bound of $\left[\mathrm{OH}^{-}\right]$is given by $\left[\mathrm{OH}^{-}\right]_{\max }$. In this limit, $\gamma=0$ and thus:

$$
\begin{equation*}
\sqrt{1-\frac{4 \alpha \gamma}{\beta^{2}}}-1 \sim 0 \tag{3.2}
\end{equation*}
$$

Regarding $\frac{\beta}{2 \alpha}$, we can just substitute $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{OH}^{-}\right]_{\max }$ into $\frac{\beta}{2 \alpha}$ to obtain $\frac{\beta}{2 \alpha}$ in this limit. In case that $\left[\mathrm{OH}^{-}\right]_{\max }$ is large enough to allow us to take only the leading terms, we obtain:

$$
\begin{equation*}
\frac{\beta}{2 \alpha} \sim \frac{2 K_{1} K_{2}+K_{X} K_{Y}}{4\left[\mathrm{OH}^{-}\right]_{\max } K_{X} K_{Y} K_{1} K_{2}} \tag{3.3}
\end{equation*}
$$

In any case, $\frac{\beta}{2 \alpha}$ is a constant value. Hence,

$$
\begin{align*}
{\left[\mathrm{CO}_{2}\right] } & =\frac{\beta}{2 \alpha}\left(\sqrt{1-\frac{4 \alpha \gamma}{\beta^{2}}}-1\right) \tag{3.4}\\
& \sim 0 \tag{3.5}
\end{align*}
$$

Therefore,

$$
\begin{align*}
{\left[\mathrm{NH}_{4}^{+}\right] } & =\frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{OH}^{-}\right] K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}} \tag{3.6}\\
& \sim \frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]_{\max }+\underbrace{\left[\mathrm{OH}^{-}\right]_{\max } K_{X} \cdot 0+K_{X} K_{Y} \cdot 0 \cdot\left[\mathrm{OH}^{-}\right]_{\max }^{2}}_{\rightarrow 0}} \tag{3.7}\\
& \sim \frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]_{\max }} \tag{3.8}\\
& =\left[\mathrm{OH}^{-}\right]_{\max } \tag{3.9}
\end{align*}
$$

$$
\begin{align*}
{\left[\mathrm{NH}_{3}\right] } & =\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}} \tag{3.10}\\
& \sim \frac{\left[\mathrm{OH}^{-}\right]_{\max }^{2}}{K_{b}} \tag{3.11}\\
{\left[\mathrm{NH}_{2} \mathrm{COOH}\right] } & =K_{X}\left[\mathrm{NH}_{3}\right]\left[\mathrm{CO}_{2}\right] \tag{3.12}\\
& \sim K_{X} \frac{\left[\mathrm{OH}^{-}\right]_{\max }^{2}}{K_{b}} \cdot 0 \tag{3.13}\\
& =0 \tag{3.14}\\
{\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right] } & =K_{Y}\left[\mathrm{NH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right] \tag{3.15}\\
& \sim K_{Y} \cdot 0 \cdot\left[\mathrm{OH}^{-}\right]_{\max } \tag{3.16}\\
& =0 \tag{3.17}
\end{align*}
$$

The effective alkalinity in this limit is

$$
\begin{align*}
{\left[\mathrm{A}_{\mathrm{eff}}\right] } & \sim \frac{\left[\mathrm{NH}_{4}^{+}\right]}{[\mathrm{N}]} \tag{3.18}\\
& \sim \frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]_{\max }} \tag{3.19}\\
& =\left[\mathrm{OH}^{-}\right]_{\max } \tag{3.20}
\end{align*}
$$

Also,

$$
\begin{align*}
{\left[\mathrm{HCO}_{3}^{-}\right] } & =K_{1}\left[\mathrm{OH}^{-}\right]\left[\mathrm{CO}_{2}\right] \tag{3.21}\\
& \sim K_{1}\left[\mathrm{OH}^{-}\right]_{\max } \cdot 0 \tag{3.22}\\
& =0 \tag{3.23}
\end{align*}
$$

$$
\begin{align*}
\theta_{\mathrm{DICI}} & =\frac{\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]}{[\mathrm{N}]} \tag{3.27}\\
& \sim 0 \tag{3.28}\\
\theta_{\mathrm{DOC}} & =\frac{\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]+\left[\mathrm{NH}_{2} \mathrm{COOH}\right]}{[\mathrm{N}]} \tag{3.29}\\
& \sim 0 \tag{3.30}\\
\theta & \sim 0 \tag{3.31}
\end{align*}
$$

$$
\begin{equation*}
\left[\mathrm{CO}_{3}^{2-}\right]=K_{2}\left[\mathrm{OH}^{-}\right]\left[\mathrm{HCO}_{3}^{-}\right] \tag{3.24}
\end{equation*}
$$

$$
\begin{equation*}
\sim K_{2}\left[\mathrm{OH}^{-}\right]_{\max } \cdot 0 \tag{3.25}
\end{equation*}
$$

$$
\begin{equation*}
=0 \tag{3.26}
\end{equation*}
$$

Chapter 4

Unphysical large $\left[\mathrm{OH}^{-}\right]$limit

Even though the limit of $\left[\mathrm{OH}^{-}\right] \rightarrow \infty$ beyond $\left[\mathrm{OH}^{-}\right]_{\text {max }}$ does not make any physical sense, investigating the asymptotic behavior in $\left[\mathrm{OH}^{-}\right] \rightarrow \infty$ is useful for better understanding of the mathematical structure of this system.

In this limit,

$$
\begin{align*}
\frac{\beta}{2 \alpha} & \sim \frac{2 K_{1} K_{2}+K_{X} K_{Y}}{4 K_{X} K_{Y} K_{1} K_{2}}>0 \tag{4.1}\\
\sqrt{1-\frac{4 \alpha \gamma}{\beta^{2}}}-1 & \sim \sqrt{1-\frac{8 K_{X} K_{Y} K_{1} K_{2}}{\left(2 K_{1} K_{2}+K_{X} K_{Y}\right)^{2}}}-1<0 \tag{4.2}
\end{align*}
$$

Therefore, $\left[\mathrm{CO}_{2}\right]$ takes an unphysical negative value in this limit as:

$$
\begin{equation*}
\left[\mathrm{CO}_{2}\right] \sim-\frac{\delta_{2}}{\left[\mathrm{OH}^{-}\right]}<0 \tag{4.3}
\end{equation*}
$$

where, a positive number δ_{2} is defined for convenience as:

$$
\begin{align*}
\delta_{2} & \equiv-\lim _{\left[\mathrm{OH}^{-}\right] \rightarrow \infty}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right] \tag{4.4}\\
& =-\frac{2 K_{1} K_{2}+K_{X} K_{Y}}{4 K_{X} K_{Y} K_{1} K_{2}}\left(\sqrt{1-\frac{8 K_{X} K_{Y} K_{1} K_{2}}{\left(2 K_{1} K_{2}+K_{X} K_{Y}\right)^{2}}}-1\right) \tag{4.5}
\end{align*}
$$

Hence,

$$
\begin{align*}
{\left[\mathrm{NH}_{4}^{+}\right] } & =\frac{K_{b}[\mathrm{~N}]}{K_{b}+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{OH}^{-}\right] K_{X}\left[\mathrm{CO}_{2}\right]+K_{X} K_{Y}\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}} \tag{4.6}\\
& \sim \frac{K_{b}[\mathrm{~N}]}{\left[\mathrm{OH}^{-}\right](1+K_{X} K_{Y} \underbrace{\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]}_{\rightarrow-\delta_{2}})} \tag{4.7}\\
& \sim \frac{K_{b}[\mathrm{~N}]}{\left[\mathrm{OH}^{-}\right]\left(1-K_{X} K_{Y} \delta_{2}\right)} \tag{4.8}
\end{align*}
$$

$$
\begin{align*}
& {\left[\mathrm{NH}_{3}\right]=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{K_{b}}} \tag{4.9}\\
& \sim \frac{\left.\mathrm{OH}^{-}\right]}{X_{b}^{b}} \frac{K_{b}[\mathrm{~N}]}{\left.\dagger \mathrm{OH}^{-}\right]\left(1-K_{X} K_{Y} \delta_{2}\right)} \tag{4.10}\\
& =\frac{[\mathrm{N}]}{1-K_{X} K_{Y} \delta_{2}} \tag{4.11}\\
& {\left[\mathrm{NH}_{2} \mathrm{COOH}\right]=K_{X}\left[\mathrm{NH}_{3}\right]\left[\mathrm{CO}_{2}\right]} \tag{4.12}\\
& \sim-\frac{K_{X}[\mathrm{~N}] \delta_{2}}{\left[\mathrm{OH}^{-}\right]\left(1-K_{X} K_{Y} \delta_{2}\right)} \tag{4.13}\\
& {\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]=K_{Y}\left[\mathrm{NH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]} \tag{4.14}\\
& \sim-K_{Y} \frac{K_{X}[\mathrm{~N}]}{1-K_{X} K_{Y} \delta_{2}} \cdot \frac{\delta_{2}}{[\mathrm{OH}]} \cdot \text { [OH7 } \tag{4.15}\\
& =-\frac{K_{X} K_{Y}[\mathrm{~N}] \delta_{2}}{1-K_{X} K_{Y} \delta_{2}} \tag{4.16}\\
& {\left[\mathrm{~A}_{\mathrm{eff}}\right] \sim-\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]} \tag{4.17}\\
& \sim \frac{K_{X} K_{Y}[\mathrm{~N}] \delta_{2}}{1-K_{X} K_{Y} \delta_{2}} \tag{4.18}\\
& {\left[\mathrm{HCO}_{3}^{-}\right]=K_{1} \underbrace{\left[\mathrm{OH}^{-}\right]\left[\mathrm{CO}_{2}\right]}_{\rightarrow-\delta_{2}}} \tag{4.19}\\
& \sim-\delta_{2} K_{1} \tag{4.20}\\
& {\left[\mathrm{CO}_{3}^{2-}\right]=K_{2}\left[\mathrm{OH}^{-}\right]\left[\mathrm{HCO}_{3}^{-}\right] \rightarrow-\infty<0} \tag{4.21}\\
& \sim-K_{1} K_{2}\left[\mathrm{OH}^{-}\right] \delta_{2} \tag{4.22}\\
& \theta_{\mathrm{DICI}}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right]}{[\mathrm{N}]} \tag{4.23}\\
& \sim-\frac{K_{1} K_{2}\left[\mathrm{OH}^{-}\right] \delta_{2}}{[\mathrm{~N}]} \rightarrow-\infty<0 \tag{4.24}\\
& \theta_{\mathrm{DOC}}=\frac{\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]+\left[\mathrm{NH}_{2} \mathrm{COOH}\right]}{[\mathrm{N}]} \tag{4.25}\\
& \sim \frac{\left[\mathrm{NH}_{2} \mathrm{COO}^{-}\right]}{[\mathrm{N}]} \tag{4.26}\\
& \sim-\frac{K_{X} K_{Y} \delta_{2}}{1-K_{X} K_{Y} \delta_{2}} \tag{4.27}\\
& \theta_{\text {DOC }}+\theta_{\text {DICI }} \sim-\frac{K_{1} K_{2}\left[\mathrm{OH}^{-}\right] \delta_{2}}{[\mathrm{~N}]} \rightarrow-\infty<0 \tag{4.28}\\
& \theta \sim-\frac{K_{1} K_{2}\left[\mathrm{OH}^{-}\right] \delta_{2}}{[\mathrm{~N}]} \rightarrow-\infty<0 \tag{4.29}
\end{align*}
$$

Chapter 5

Comparison between the model and Pexton and Badger (1938) for $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$

For $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ and $T=20^{\circ} \mathrm{C}$, Pexton and Badger (1938) provides two valid data points. Fig.(5.1) shows a comparison between the model and Pexton and Badger (1938) for $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ and $T=20^{\circ} \mathrm{C} . \gamma_{ \pm}^{-2}=4.0$ has been applied for the fitting of these data. Note that Pexton and Badger (1938) does not provide data points for $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ and $T=40^{\circ} \mathrm{C}$.

---- model before applying $\gamma_{ \pm}, 20^{\circ} \mathrm{C} \quad \bigcirc \quad$ Pexton and Badger (1938), $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}, 20^{\circ} \mathrm{C}$ model after applying $\gamma_{ \pm}, 20^{\circ} \mathrm{C}$

Figure 5.1: A comparison between the model and Pexton and Badger (1938) for $[\mathrm{N}]=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$ and $20^{\circ} \mathrm{C}$. The value of $\gamma_{ \pm}^{-2}$ is 4.0 .

Chapter 6

Comparison between the model and Pexton and Badger (1938) for $10-100000 \mathrm{~Pa}$ on a logarithmic scale

In the main text, the data falling between $0-10000 \mathrm{~Pa}$ are shown. There are a few points above 10000 Pa which have been used in fitting the data but could not be shown on an intuitive linear scale. In Fig.6.1 and Fig.6.2, we show all the data on a logarithmic scale that ranges from 10 to 100000 Pa .

Figure 6.1: A comparison of the experimental data from Pexton and Badger (1938) and the model at $T=20^{\circ} \mathrm{C}$ or $T=40^{\circ} \mathrm{C}$ before influence of ionic strength is corrected.

Figure 6.2: A comparison of the experimental data from Pexton and Badger (1938) and the model at $T=20^{\circ} \mathrm{C}$ or $T=40^{\circ} \mathrm{C}$ after $\gamma_{ \pm}$is applied to correct the influence of ionic strength.

