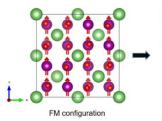
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

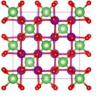
Supporting Information

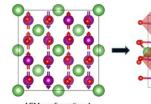
Dopant-Induced Electronic Design of Redox-Active Elements in LiMn₂O₄ Spinel

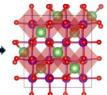
Structures

Jae Seung Seol,¹ Seungho Yu¹ and Ki Chul Kim^{1,2*}

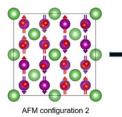

¹Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul 05029,

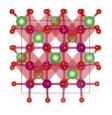

The Republic of Korea

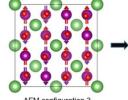

²Division of Chemical Engineering, Konkuk University, Seoul 05029, The Republic of Korea

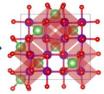

Corresponding Author

*E-mail: kich2018@konkuk.ac.kr (K. C. Kim).

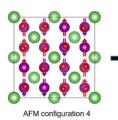


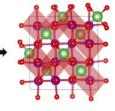


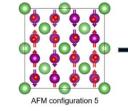


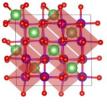


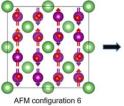
AFM configuration 1

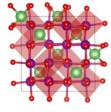




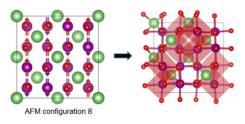
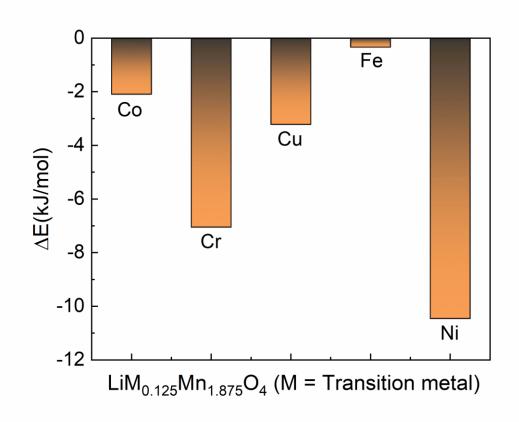
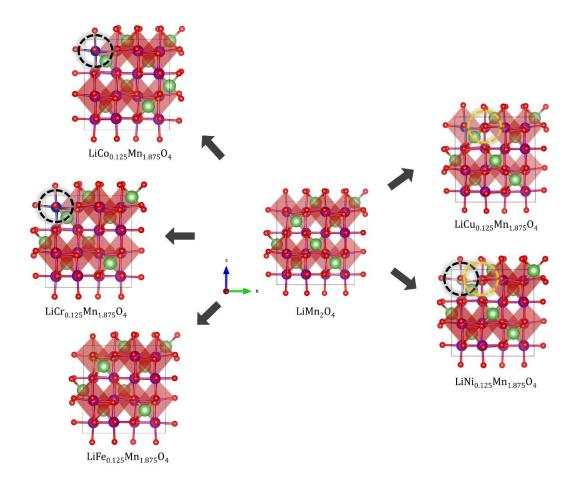


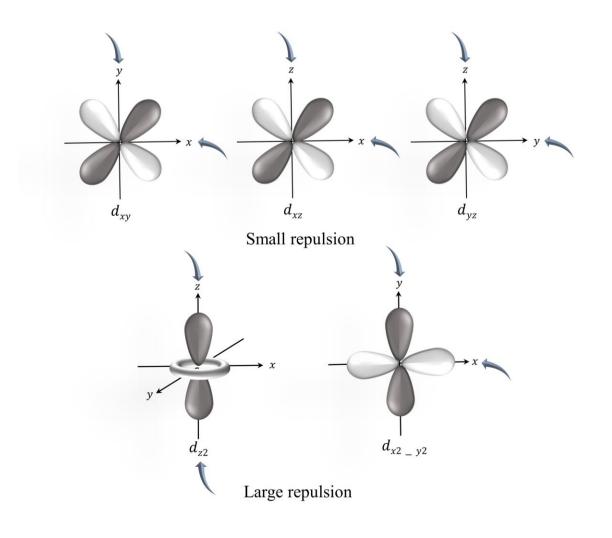



AFM configuration 3



AFM configuration 7


Figure S1. A total of nine possible configurations, such as one ferromagnetic (FM) and eight antiferromagnetic (AFM) configurations, for LiMn₂O₄ supercell.

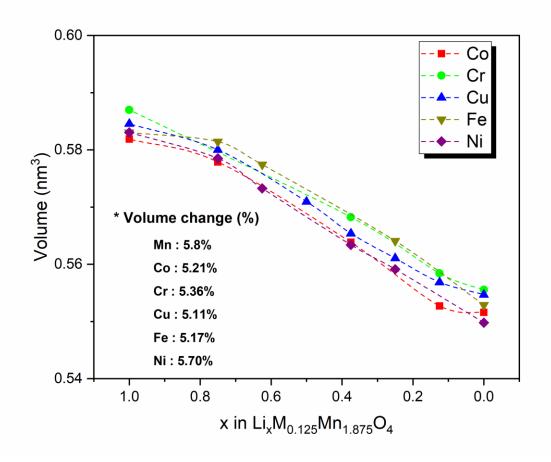
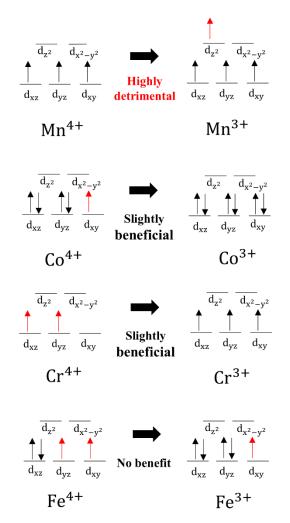
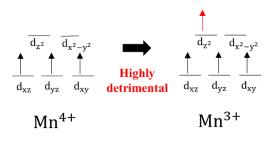
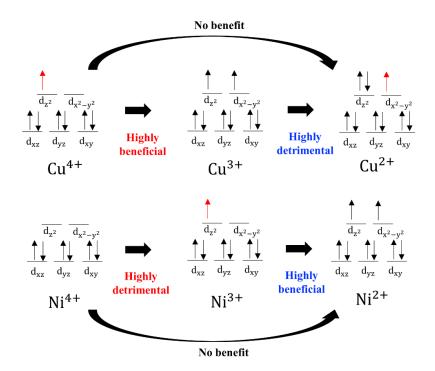

Figure S2. The DFT-computed energies (ΔE) of LiM_{0.125}Mn_{1.875}O₄ (M = Co, Cr, Cu, Fe, and Ni) with M doped in Mn³⁺ position relative to those with M doped in Mn⁴⁺ position.

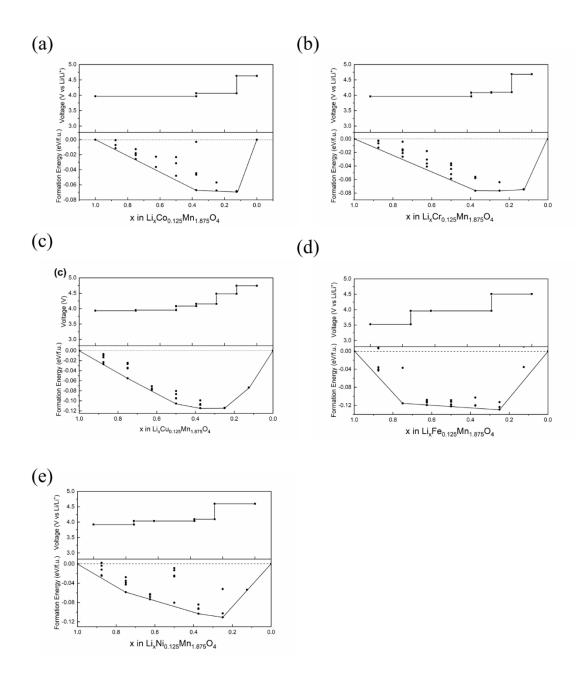
Figure S3. Reddish illustration of MO₆ octahedra with asymmetric electron configurations in LiM_{0.125}Mn_{1.875}O₄ (M = Co, Cr, Cu, Fe, and Ni). Black dash circles are used to depict MO₆ octahedra with symmetric electron configurations. Yellow dash circles are used to depict dopant-induced changes from Mn³⁺ to Mn⁴⁺. For clarity, the eight intrinsic Mn⁴⁺O₆ octahedra in the structures provide no illustration.

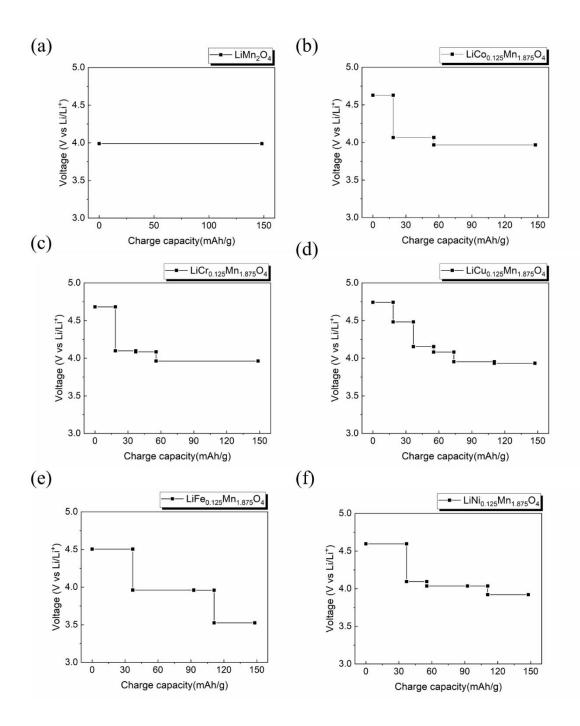

Figure S4. Five *d* orbitals in a crystal field theory. The directions coordinating ligands are an arrow are depicted by arrows.


Figure S5. Volumetric changes of LiM_{0.125}Mn_{1.875}O₄ (M = Co, Cr, Cu, Fe, and Ni) experienced during the full delithiation process.


Discharging process

Group II : Co, Cr, Fe


Group III : Cu, Ni



Discharging process	Reduction reaction	Highly detrimental S	lightly beneficial	No benefit
$Mn_{16}O_{32} \rightarrow Li_8Mn_{16}O_{32}$	$Mn^{4+} \rightarrow Mn^{3+}(8e^{-})$	8	0	0
Mn15CoO32 → Li8Mn15CoO32	Mn ⁴⁺ → Mn ³⁺ (7e ⁻)	7	1	0
	$Co^{4+} \rightarrow Co^{3+}(1e^{-})$			
Mn15CrO32 → Li8Mn15CrO32	Mn ⁴⁺ → Mn ³⁺ (7e ⁻)	7	1	0
	$Cr^{4+} \rightarrow Cr^{3+}(1e^{-})$			
Mn15CuO32 → Li8Mn15CuO32	$Mn^{4+} \rightarrow Mn^{3+}(6e^{-})$	6	0	2
	$Cu^{4+} \rightarrow Cu^{2+}(2e^{-})$			
Mn15FeO32 → Li8Mn15FeO32	Mn ⁴⁺ → Mn ³⁺ (7e⁻)	7	0	1
	Fe ⁴⁺ → Fe ³⁺ (1e ⁻)			
Mn15CoO32→ Li8Mn15NiO32	Mn ⁴⁺ → Mn ³⁺ (6e⁻)	6	0	2
	Ni ⁴⁺ → Ni ²⁺ (2e ⁻)			

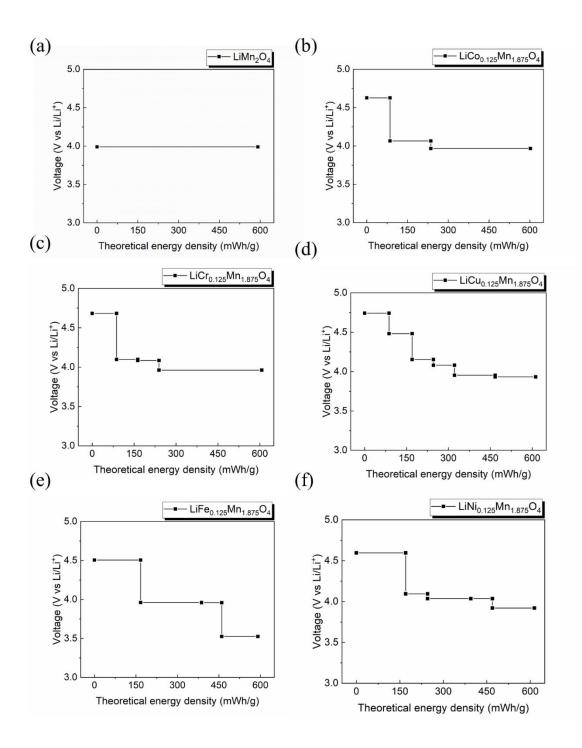

Figure S6. Change in the electron configurations of $M_{0.125}Mn_{1.875}O_4$ (M = Mn, Co, Cr, Cu, Fe, and Ni) experienced during the discharging process and resultant energetic benefit/penalty. The number of transition metal elements associated with either the energetic benefit, penalty, or no benefit experienced during the discharging process is counted for each compound.

Figure S7. Formation energies and resultant voltages in the various delithiation levels for $Li_x M_{0.125} Mn_{1.875} O_4$ (M = (a) Co, (b) Cr, (c) Cu, (d) Fe, and (e) Ni, where 0 < x < 1).

Figure S8. Theoretical charge capacity profiles for for $Li_xM_{0.125}Mn_{1.875}O_4$ (M = (a) Mn, (b) Co, (c) Cr, (d) Cu, (e) Fe, and (f) Ni, where 0 < x < 1).

Figure S9. Theoretical energy density profiles for for $Li_x M_{0.125} Mn_{1.875}O_4$ (M = (a) Mn, (b) Co, (c) Cr, (d) Cu, (e) Fe, and (f) Ni, where 0 < x < 1).