Electronic Supporting Information

Contrasting Luminescence in Heparin and DNA-templated Co-assemblies of Dimeric Cyanostilbenes: Efficient Energy Transfer in Heparin-based Co-assemblies

Dhananjoy Maity[‡], Shubhra K. Bhaumik[‡] and Supratim Banerjee*

Corresponding Author

*Supratim Banerjee- The Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India; Email: supratim.banerjee@iiserkol.ac.in; ORCID- orcid.org/0000-0001-8558-4444

[‡]These authors contributed equally.

Table of Contents

E	xperimental Procedure	S3
1.	Synthetic Procedure and Characterization Data	S 3
2.	Preparation of Solutions	S7
3.	Titration Procedures	S8
4.	Energy Transfer Efficiency Calculation	S 8
5.	Antenna Effect Calculation	S 8
Re	esults and Discussion	S9
1.	Photo-physical Properties of D _{px} Ns	S9
2.	Heparin Binding Studies in Buffer	S10
3.	Heparin Binding Studies in Plasma and Serum	S14
4.	DNA Binding Studies in Buffer	S14
5.	Energy Transfer Studies	S23
6.	Hydrodynamic Diameter Measurements	S27
7.	Zeta Potential Measurements	S35
8.	Time-Correlated Single Photon Counting (TCSPC) Measurements	S40
9.	NMR Characterizations	S42

Experimental Procedures

1. Synthetic Procedure and Characterization Data:

Scheme S1. Synthetic route of D_{px}N (N=6, 10, 12)

Synthesis of 3

4-(4-cyanomethyl)phenylboronic (2) acid (500 mg, 3.11 mmol) and 4-bromopyridine hydrochloride (1) (500 mg, 2.57 mmol) was added in a round bottom flask followed by addition of isopropanol (4.5 mL), toluene (4.5 mL) and 2M K₂CO₃ (6 mL). The solution was stirred for 30 minutes at 100 $^{\circ}$ C under N₂ atmosphere. Then Pd(PPh₃)₄ (89 mg, 0.06 mmol) was added and the mixture was finally refluxed for 7 hrs under N₂ atmosphere. The reaction mixture was

allowed to cool to room temperature and then poured into 50 mL water. Then, the crude was extracted by ethyl acetate and dried over anhydrous Na_2SO_4 . Then the desired product was purified from the crude by using column chromatography (solid phase: silica gel 100-200 mesh, eluent: 50% ethyl acetate/hexane). Solvent was evaporated and finally dried under vacuum. Yield ~ 98%.

General procedure for synthesis of C_n-CHO (n=6, 10, 12)

4-(4-pyridinyl) benzaldehyde (4) (200 mg, 1.09 mmol) and alkyl bromide (21.9 mmol) were taken into a 10 mL round bottom flask and then 1.5 mL acetonitrile was added into it. The reaction mixture was stirred at 80 °C for 35 hrs and then allowed to cool at room temperature. A light-yellow colour semi solid crude obtained after removal of excess amount of acetonitrile was by rotavapor. Further, the crude was purified by using column chromatography (solid phase: neutral alumina, eluent: 5% MeOH in DCM). Yield ~ 80-90%.

¹H NMR for C₆-CHO (500 MHz, CDCl₃): δ (ppm) = 10.01 (s, 1H), 9.59 (d, *J*=8.0 Hz, 2H), 8.38 (d, *J*=8.0 Hz, 2H), 7.95-7.96 (m, 4H), 4.859 (t, *J*=9.0 Hz, 2H), 1.987 (quintet, *J*=9.0 Hz, 2H), 1.18 (m, *J*=7.0 Hz, 2H), 0.703 (t, *J*=8.5 Hz, 3H); ¹³C NMR for C₆-CHO (125 MHz, CDCl₃): δ (ppm) = 191.21, 154.20, 145.35, 138.68, 138.06, 130.57, 128.66, 125.80, 61.23, 31.57, 30.89, 25.52, 22.12, 13.71; MS (ESI): m/z calculated for C₁₈H₂₂NO⁺: 268.1696; Found: 268.1681.

¹H NMR for C₁₀-CHO (CDCl₃, 500 MHz): δ (ppm) =9.93 (s, 1H), 9.48 (d, *J*=6.5 Hz, 2H), 8.33 (d, *J*=6.5 Hz, 2H), 7.89-7.90 (m, 4H), 4.79 (t, *J*=7.5 Hz, 2H), 1.91 (quintet, *J*=7.5 Hz, 2H), 1.22 (quintet, *J*=8.0 Hz, 2H), 1.13 (quintet, *J*=6.5 Hz, 2H), 0.997 (m, 10H), 0.625 (t, *J*=7.0 Hz, 3H); ¹³C NMR for C₁₀-CHO (125 MHz, CDCl₃): δ (ppm) = 191.05, 154.38, 145.25, 138.56, 137.97, 130.45, 128.54, 125.68, 61.13, 31.55, 31.43, 29.09, 29.01, 28.84, 28.75, 25.81, 22.25, 13.74; MS (ESI): m/z calculated for C₂₂H₃₀NO⁺: 324.2322; Found: 324.2315.

¹H NMR for C₁₂-CHO (CDCl₃, 400 MHz): δ (ppm) = 10.02 (s, 1H), 9.57 (d, *J*=5.0 Hz, 2H), 8.4 (d, *J*=5.0 Hz, 2H), 8.97-8.98 (m, 4H), 4.87 (t, 2H), 2.0 (quintet, 2H), 1.3-1.11 (m, 18H), 0.74 (t, *J*=5.0 Hz, 3H); ¹³C NMR for C₁₂-CHO (125 MHz, CDCl₃): δ (ppm) = 191.18, 154.37, 145.23, 138.59, 137.98, 130.49, 128.63, 125.75, 61.24, 31.57, 29.28, 29.23, 29.10, 29.00, 28.83, 25.89, 22.35, 13.82; MS (ESI): m/z calculated for C₂₄H₃₄NO⁺: 352.2635; Found: 352.2635.

General procedure for synthesis of NCS (N=6, 10, 12)

(4-Pyridin-4-yl-phenyl)-acetonitrile (**3**) (113 mg, 0.58 mmol) and C_n -CHO (0.58 mmol) were added in a round bottom flask followed by addition of 3 mL *tert*-butanol and this mixture was stirred for 30 min at 60 °C. Tetrabutylamonium hydroxide in methanol solution (1 M) (0.058 mL, 0.1 eq) was taken in a vial and then it was diluted four time in by methanol. This solution was added dropwise into the round bottom flask containing reaction mixture until light yellow coloration was observed. Then this reaction mixture was stirred for 3 hrs. A yellow crude was obtained after washing with hot *tert*-butanol. The product was further purified by using column chromatography (solid phase: neutral alumina, eluent: 5% MeOH in DCM). Yield ~70-80%.

¹H NMR for 6CS (400 MHz, DMSO-D₆): δ (ppm) = 9.19 (d, *J*=8.0 Hz, 2H), 8.68 (d, *J*=8.0 Hz, 2H), 8.62 (d, *J*=8.0 Hz, 2H), 8.31 (d, *J*=8.0 Hz, 2H), 8.29 (s, 1H), 8.20 (d, *J*=8.0 Hz, 2H), 8.01 (d, *J*=8.0 Hz, 2H), 7.97 (d, *J*=8.0 Hz, 2H), 7.80 (d, *J*=4.0 Hz, 2H), 4.61 (t, *J*=8.0 Hz, 2H), 1.95 (quintet, *J*=6.0 Hz, 2H), 1.31 (m, 6H), 0.87 (t, *J*=6.0 Hz, 3H)); ¹³C NMR for 6CS (100 MHz, DMSO-D₆): δ (ppm) = 153.35, 150.34, 145.65, 144.87, 141.84, 138.10, 136.91, 134.97, 134.13, 130.16, 128.69, 127.61, 126.74, 124.59, 121.11, 117.46, 111.66, 59.98, 31.28, 30.57, 25.08, 21.84, 13.81: MS (ESI): m/z calculated for C₃₁H₃₀N₃⁺: 444.2434; Found: 444.2434.

¹H NMR for 10CS (500 MHz, 17% CDCl₃ in DMSO-D₆): δ (ppm) = 9.18 (d, *J*=7.0 Hz, 2H), 8.67 (d, *J*=7.0 Hz, 2H), 8.60 (d, *J*=7.0 Hz, 2H), 8.27 (t, *J*=7.0 Hz, 2H), 8.20 (d, *J*= 9.0 Hz, 2H), 7.97 (t, *J*=9.0 Hz, 4H), 7.77 (d, *J*=6.0 Hz, 2H), 4.615 (t, *J*=7.0 Hz, 2H), 1.956 (quintet, *J*=7.0 Hz, 2H), 1.319-1.220 (m, 14H), 0.85 (t, *J*=6.5 Hz, 3H); ¹³C NMR for 10CS (125 MHz, 17% CDCl₃ in DMSO-D₆): δ (ppm) = 153.48, 150.02, 145.87, 144.80, 141.60, 138.07, 136.87, 134.85, 134.13, 130.10, 128.54, 127.49, 126.66, 124.56, 121.06, 117.27, 111.74, 59.98, 31.19, 30.68, 28.80, 28.73, 28.56, 28.35, 25.39,21.99, 20.87: MS (ESI): m/z calculated for C₃₅H₃₈N₃⁺: 500.3060; Found: 500.3071.

¹H NMR for 12CS (400 MHz, DMSO-D₆): δ(ppm) = 9.17 (d, *J*=7.0 Hz, 2H), 8.68 (d, *J*=6.0 Hz, 2H), 8.61 (d, *J*=7.0 Hz, 2H), 8.32 (d, *J*=6.0 Hz, 2H), 8.31 (t, *J*=8.5 Hz, 2H), 8.02 (d, *J*=8.5 Hz, 2H), 7.97 (d, *J*=8.5 Hz, 2H), 7.81 (d, *J*=6.0 Hz, 2H), 4.597 (t, *J*=7.0 Hz, 2H), 1.95 (quintet, 2H), 1.30-1.23 (m, 18H), 0.84 (t, *J*=6.0 Hz, 2H); ¹³C NMR for 12CS (125 MHz, 17%CDCl₃ in DMSO-D₆): δ(ppm) = 153.35, 150.32, 145.65,144.86, 141.83, 138.09, 136.90, 134.90, 134.96, 134.13, 130.15, 128.67, 127.59, 126.73, 124.58, 121.09, 117.44, 111.65, 59.98, 31.09,

30.61, 28.41, 28.33, 25.41, 21.98, 13.88: **MS (ESI):** m/z calculated for C₃₇H₄₂N₃⁺: 528.3373; Found: 528.3370

General procedure for synthesis of $D_{px}N$ (N=6, 10, 12)

NCS (0.043 mmol) and p-xylene dibromide (**5**) (4.6 mg, 0.017 mmol) were taken into a round bottom flask and then 1 mL acetonitrile was added into it. The reaction mixture was stirred at 80 °C for 24 hrs and then allowed to cool to room temperature. A yellow-coloured precipitation was observed which was purified by washing with methanol/DCM (1:1) mixture. Yield~ 80-90%.

¹**H NMR for** $\mathbf{D}_{px}\mathbf{6}$ (**400 MHz, DMSO-D**₆): $\delta(\text{ppm}) = 9.32$ (d, *J*=7.0 Hz, 4H), 9.19 (d, *J*=7.0 Hz, 4H), 8.66 (d, *J*=7.0 Hz, 4H), 8.63(d, *J*=7.0 Hz, 4H), 8.54 (s, 2H), 8.33 (d, *J*=8.0 Hz, 4H), 8.29 (d, *J*=8.0 Hz, 4H), 8.23 (d, *J*=8.0 Hz, 4H), 8.09 (d, *J*=8.0 Hz, 4H), 7.71 (s, 4H), 5.92 (s, 4H), 4.62 (t, *J*=7.0 Hz, 4H), 1.95 (quintet, *J*=6.8 Hz, 14H), 1.32 (m, 12H), 0.884 (t, *J*=7.0 Hz, 6H); ¹³**C NMR for** $\mathbf{D}_{px}\mathbf{6}$ (**125 MHz, DMSO-D**₆): $\delta(\text{ppm}) = 153.89$, 153.32, 144.97, 144.91, 143.35, 136.87, 136.69, 135.50, 135.35, 134.18, 130.33, 129.53, 129.12, 128.75, 127.06, 125.03, 124.68, 117.68, 111.22, 61.90, 60.03, 30.58, 30.56, 25.07, 21.83, 13.08; **MS (ESI)**: m/z calculated for C₇₀H₆₈N₆⁴⁺: 248.1371; Found: 248.1364.

¹**H** NMR for D_{px} **10** (**400** MHz, DMSO-D₆): δ (ppm) = 9.31 (d, *J*=8.0 Hz, 4H), 9.185 (d, *J*=8.0 Hz, 4H), 8.65 (d, *J*=8.0 Hz, 4H), 8.62 (d, *J*=8.0 Hz, 4H), 8.44 (s, 4H), 8.32 (d, *J*=8.0 Hz, 4H), 8.28 (d, *J*=8.0 Hz, 4H), 8.23 (d, *J*=8.0 Hz, 4H), 8.08 (d, *J*=8.0 Hz, 4H), 7.70 (s, 4H), 5.91 (s, 4H), 4.61 (t, *J*=8.0 Hz, 4H), 1.96 (quintet, *J*=4.0-8.0 Hz, 4H), 1.31 (s, 28H), 0.85 (t, *J*=8.0 Hz, 6H); ¹³C NMR for D_{px} **10** (**125** MHz, DMSO-D₆): δ (ppm) = 153.91, 153.34, 144.99,144.93, 143.37, 136.89, 136.71,135.51, 135.36, 134.20, 130.35, 129.55, 129.14, 128.76, 127.09, 125.05, 124.69, 117.30, 111.25, 61.97, 60.09, 31.26, 30.64, 28.85, 28.78, 28.63, 28.39, 25.43, 22.07, 13.94; MS (ESI): m/z calculated for C₇₈H₈₄N₆⁴⁺: 276.1684 ; Found: 276.1694.

¹H NMR for **D**_{*px*}**12** (400 MHz, DMSO-D₆): δ(ppm) = 9.30 (d, *J*=8.0 Hz, 4H), 9.18 (d, *J*=8.0 Hz, 4H), 8.65(d, *J*=8.0 Hz, 4H), 8.62 (d, *J*=8.0 Hz, 4H), 8.44 (s, 2H), 8.32 (d, *J*=8.0 Hz, 4H), 8.28 (d, *J*=8.0 Hz, 4H), 8.23 (d, *J*=8.0 Hz, 4H), 8.08 (d, *J*=8.0 Hz, 4H), 7.69 (s, 4H), 5.90 (s, 4H), 4.61 (t, *J*=8.0 Hz, 4H), 1.95 (quintet, *J*=6.0-8.0 Hz, 4H), 1.31-1.23 (m, 4H), 0.85 (d, *J*=6.0 Hz, 6H); ¹³C NMR for **D**_{*px*}**12** (**125** MHz, **DMSO-D**₆): δ(ppm) =154.15, 153.54, 145.09, 145.03, 143.49, 137.01, 136.83, 135.56, 135.53, 134.35, 130.52, 129.75, 129.27, 128.88, 127.26, 125.20, 124.85, 117.45, 111.46, 62.22, 60.32, 31.40, 30.75, 29.11, 29.01, 28.89, 28.81,

28.51, 25.54, 22.20, 14.08; **MS** (**ESI**): m/z calculated for $C_{82}H_{92}N_6^{4+}$: 290.1840; Found: 290.1834.

2. Preparation of Solutions:

Preparation of solution of D_{*px*}**Ns:**

Initially, stock solutions of $\mathbf{D}_{px}\mathbf{N}s$ (N = 6, 10, 12) were prepared by dissolving the solid powders in spectroscopic grade dimethyl sulfoxide (DMSO). The DMSO solutions were then diluted by 5 mM tris-HCl buffer made in Milli-Q water to get desired solutions having 1% DMSO as the final DMSO fraction. Solution of $\mathbf{D}_{px}\mathbf{N}s$ in aqueous buffer were equilibrated for 30-40 min. **Preparation of heparin stock solution:**

Chart S1 Common repeat units of heparin, chondroitin-4-sulfate (**ChS**), hyaluronic acid (**HA**), and double-stranded DNA (*ds*-DNA)

The disaccharide unit shown in Fig. S1 is taken as the repeat unit of heparin for the molecular weight calculation. Though the supplied heparin contains only 30-40% materials with the active sequence of repeat units, the whole sample can still bind through the anionic polysaccharide unit irrespective of whether the repeat units are in active sequence or not. The molecular weight of the repeat unit is 665.40 g/mole. Heparin stock solutions were prepared in buffer and further diluted during titration.

Preparation of *ct*-DNA stock solution:

The *ct*-DNA stock was prepared by dissolving 1 mg of *ct*-DNA in 1 mL of 5 mM tris-HCl buffer (pH 7.40). The purity of *ct*-DNA was checked via monitoring the ratio of the absorbance at 260 and 280 nm, and the A_{260}/A_{280} ratio was found to be 1.87, indicating that *ct*-DNA was sufficiently free from protein contamination. The concentration of *ct*-DNA solution was spectrophotometrically calculated to be 2.03 mM using its known molar absorption coefficient e at 260 nm, which is 6600 M⁻¹ cm⁻¹.

3. Titration Procedures:

At first, heparin solution was added to freshly prepared and equilibrated $\mathbf{D}_{px}\mathbf{N}$ solutions in aqueous buffer and further equilibrated for 10 min. Then different concentration of Nile Red dye were added to it and data were recorded in a spectrofluorometer after 5 min.

4. Energy Transfer Efficiency Calculation

Energy transfer (ET) efficiency is the percentage of the absorbed energy that is transferred to the acceptor and is expressed by the following equation

$$ET = (1 - I/I_0) \times 100\%$$

where, I and I_0 are the fluorescence intensities without and in presence of Nile Red (**NR**) in aqueous buffer.

5. Antenna Effect Calculation

The antenna effect (AE) value under certain concentrations of donor and acceptor is the ratio of the emission intensities at emission maximum of the acceptor in presence of the donor upon excitation of the donor and is expressed as follows-

$$AE = \frac{|\begin{array}{c} Em max. of A \\ I \\ D+A (\lambda_{ex} = 365 nm) \\ \end{array} - \left[\begin{array}{c} Em max. of A \\ D (\lambda_{ex} = 365 nm) \\ \end{array} \right]}{|\begin{array}{c} Em max. of A \\ A (\lambda_{ex} = abs maxima of A) \\ \end{array}}$$

where, $I_{D+A(\lambda_{ex}=365 \text{ nm})}^{Em \max. of A} = Emission intensity of acceptor in the presence of donor upon the excitation of donor$ $<math>I_{D(\lambda_{ex}=365 \text{ nm})}^{Em \max. of A} = Emission intensity of donor in the absence of acceptor upon the excitation of donor$ $<math>I_{A(\lambda_{ex}=abs \max max)}^{Em \max. of A} = Emission intensity of acceptor in the presence of donor upon the excitation of donor$

Results and Discussion

1. Photo-physical Properties of D_{px}Ns

Fig. S1 (a) Absorption and (b) emission spectra of $D_{px}N$ (N=6, 10, 12) at 5.0 μ M in DMSO.

Fig. S2 (a) Absorption and (b) emission spectra of $D_{px}N$ (N=6, 10, 12) at 5.0 μ M in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S3 FESEM images of (a) $D_{px}10$ (5.0 µM) and (b) $D_{px}12$ (5.0) µM dried from their aqueous solution. (c) TEM image of $D_{px}12$ (5.0) µM dried from its aqueous solution.

D _{px} N derivative	λ_{em}	Lifetime (t) parameters	Average	χ^2
			lifetime (τ_{avg})	
$\mathbf{D}_{px}6 (5.0 \ \mathrm{\mu M})$	453 nm	<0.2 ns (100%)	<0.2 ns	1.05
$D_{px}10 (5.0 \ \mu M)$	545 nm	$\tau_1 = 1.80 \text{ ns} (39\%)$	3.97 ns	1.09
		$\tau_2 = 5.36 \text{ ns} (61\%)$		
$D_{px}12 (5.0 \ \mu M)$	545 nm	$\tau_1 = 1.88 \text{ ns} (42\%)$	4.21 ns	1.08
		$\tau_2 = 5.90 \text{ ns} (58\%)$		

Table S1 Fluorescence lifetime data of $\mathbf{D}_{px}\mathbf{N}s$ in aqueous buffer ($\lambda_{ex} = 340 \text{ nm}$).

2. Heparin Binding Studies in Buffer

Fig S4. TEM images of (a) $D_{px}10$ (5.0 µM) and (b) $D_{px}12$ (5.0 µM), and FESEM images of (c) $D_{px}10$ (5.0 µM) and (d) $D_{px}12$ (5.0 µM) in the presence of heparin (10 µM) dried from its aqueous solution.

Fig. S5 Absorption spectral changes of (a) $D_{px}10$ (1.0 µM) and (b) $D_{px}12$ (1.0 µM), and (c) emission spectral changes of $D_{px}12$ (1.0 µM) upon addition of different amount of heparin in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S6 (a) Absorption and (b) emission spectral changes $D_{px}10$ (5.0 µM) upon addition of different amount of heparin in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S7 (a) Absorption and (b) emission spectral changes $D_{px}12$ (5.0 µM) upon addition of different amount of heparin in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

$\mathbf{D}_{px}\mathbf{N}$	λem	Lifetime (t) parameters	Average	χ^2
derivative			lifetime ($ au_{avg}$)	
$D_{px}6(5.0 \ \mu M) +$	540 nm	$\tau_1 = 3.35 \text{ ns} (4\%)$	18.34 ns	1.05
Hep (10 µM)		$\tau_2 = 18.97 \text{ ns} (96\%)$		
$D_{px}10 (5.0 \ \mu M)$	545 nm	$\tau_1 = 4.51 \text{ ns} (30\%)$		1.07
+ Hep (10 μM)		$\tau_2 = 7.28 \text{ ns} (6\%)$	10.14 ns	
		$\tau_2 = 13.05 \text{ ns} (64\%)$		
$D_{px}12 (5.0 \ \mu M)$	545 nm	$\tau_1 = 4.07 \text{ ns} (15\%)$		1.04
+ Hep (10 μM)		$\tau_2 = 11.10 \text{ ns} (74\%)$	9.06 ns	
		$\tau_2 = 2.12 \text{ ns} (11\%)$		

Table S2 Fluorescence lifetime data of $\mathbf{D}_{px}\mathbf{N}s$ in presence of heparin in aqueous buffer ($\lambda_{ex} = 340 \text{ nm}$).

Fig. S8 Absorption spectral changes of $D_{px}6$ at (a) 1.0 µM and (b) 5.0 µM and (c) emission spectral changes of $D_{px}6$ (5.0 µM) upon addition of different amount of heparin in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S9 Emission spectral changes of (a) $D_{px}6$ (1.0 µM) and (b) $D_{px}10$ (1.0 µM) upon addition of different amount of chondroitin sulfate (ChS) in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S10 Emission spectral changes of (a) $D_{px}6$ (1.0 µM) and (b) $D_{px}10$ (1.0 µM) upon addition of different amount of hyaluronic acid (HA) in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S11 Comparison bar diagram of (a) $D_{px}6$ (1.0 µM) and (b) $D_{px}10$ (1.0 µM) upon addition of heparin (hep), chondroitin sulfate (ChS) and hyaluronic acid (HA) in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

3. Heparin Binding Studies in Plasma and Serum

Fig. S12 Emission spectral changes of (a) $D_{px}10$ (25 µM) and (b) $D_{px}12$ (25 µM) upon addition of different amount of heparin in 25% plasma-aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S13 Emission spectral changes of (a) $D_{px}10$ (30 µM) and (b) $D_{px}12$ (30 µM) upon addition of different amount of heparin in 30% Serum-aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

4. DNA Binding Studies in Buffer

Fig. S14 Absorption spectral changes of (a) $D_{px}10$ (10.0 µM) and (b) $D_{px}12$ (10.0 µM), and (c) emission spectral changes of $D_{px}10$ (10.0 µM) upon addition of different amount of ctDNA in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

D _{px} N derivatives	Size w/o- ctDNA (nm)	Size w/- ctDNA (20 µM) (nm)	ζ w/o- ctDNA (mV)	ζ w/- ctDNA (20 μM) (mV)
$\mathbf{D}_{px}6 (10 \mu\mathrm{M})$	95	1021	22.3	8.45
$D_{px}10 (10 \ \mu M)$	204	272	31.6	-36.9
$D_{px}12 (10 \ \mu M)$	164	261	27.8	-38.4

Table S3 DLS data for the average size and zeta potential (ζ) of **D**_{*pX*}**N** derivatives before and after ctDNA addition in aqueous buffer (5 mM tris-HCl, 99:1 water/DMSO, pH 7.4).

Fig. S15 Absorption spectral changes of $D_{px}6$ (10.0 µM) upon addition of different amount of ctDNA in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S16 Cyclic voltammograms of (a) $\mathbf{D}_{px}\mathbf{6}$, (b) $\mathbf{D}_{px}\mathbf{10}$ and (c) $\mathbf{D}_{px}\mathbf{12}$ in film state on a carbon paper in 60% water-acetonitrile solvent. (d) Cyclic voltammogram of ferrocene as reference in the same medium. Working electrode: Carbon paper; Reference electrode: Ag/AgCl; Secondary electrode: Pt electrode; Electrolyte: 0.5M KCl.

HOMO energy calculation of D_{px}N derivatives:

Fig. S17 DFT optimized structures of (a) adenosine monophosphate (AMP), (b) guanosine monophosphate (GMP), (c) cytidine monophosphate (CMP) and (d) thymidine monophosphate (TMP). Density functional theory (DFT) to optimize the structures were carried out using b3lyp/6-31+g(d,p) level of theory implying CPCM model with water as solvent.

Nucleoside monophosphate	HOMO (in a.u.)	HOMO (in eV)	LUMO (in a.u.)	LUMO (in eV)
AMP	-0.23784	-6.47	-0.04277	-1.164
GMP	-0.22748	-6.19	-0.03119	-0.849
СМР	-0.24990	-6.80	-0.05286	-1.438
TMP	-0.25257	-6.87	-0.0576	-1.567

Table S4 HOMO and LUMO energies of AMP, GMP, CMP and TMP calculated by DFT.

Table S5 Fluorescence lifetime data of $D_{px}Ns$ in absence and presence of ctDNA in aqueousbuffer ($\lambda_{ex} = 340$ nm).

D _{px} N derivative	λem	Lifetime (τ) parameters Average		χ^2
			lifetime ($ au_{avg}$)	
$\mathbf{D}_{px}6 (10 \ \mu \mathrm{M})$	545 nm	$\tau_1 = 1.93 \text{ ns} (40\%)$	4.57 ns	1.21
		$\tau_2 = 6.77 \text{ ns} (56\%)$		
		$\tau_3 = 0.18 \text{ ns} (4\%)$		
$D_{px}6(10 \ \mu M) +$	545 nm	$\tau_1 = 2.35 \text{ ns} (31\%)$	6.01 ns	1.15
ctDNA (20 µM)		$\tau_2 = 8.59 \text{ ns} (61\%)$		
		$\tau_3 = 0.52 \text{ ns} (8\%)$		
$D_{px}10 (10 \ \mu M)$	545 nm	$\tau_1 = 1.61 \text{ ns} (15\%)$	6.69 ns	1.22
		$\tau_2 = 7.58 \text{ ns} (85\%)$		
$D_{px}10 (10 \ \mu M) +$	545 nm	$\tau_1 = 1.91 \text{ ns} (47\%)$		1.18
ctDNA (20 µM)		$\tau_2 = 0.46 \text{ ns} (11\%)$	3.36 ns	
		$\tau_3 = 5.75 \text{ ns} (42\%)$		
$D_{px}12 (10 \ \mu M)$	545 nm	$\tau_1 = 1.48 \text{ ns} (15\%)$	6.78 ns	1.20
		$\tau_2 = 7.72 \text{ ns} (85\%)$		
$D_{px}12 (10 \ \mu M) +$	545 nm	$\tau_1 = 1.63 \text{ ns} (38\%)$		1.15
ctDNA (20 µM)		$\tau_2 = 0.34 \text{ ns} (6\%)$	3.62 ns	
		$\tau_3 = 5.33 \text{ ns} (56\%)$		

Fig. S18 CD spectra of $D_{px}10$ (10.0 μ M) in absence and presence of ctDNA (100 μ M) in aqueous buffer (5 mM tris-HCl, 99:1 water-DMSO).

Fig. S19 (a) Emission spectral change of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of **D**_{*px*}**6** (10 μ M) in buffer. (b) CD spectral changes of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of different amount of **D**_{*px*}**6** in buffer.

Fig. S20 (a) Emission spectral change of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of **D**_{*px*}**10** (10 μ M) in buffer. (b) CD spectral change of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of **D**_{*px*}**10** (20 μ M) in buffer.

Fig. S21 (a) Emission spectral change of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of **D**_{*px*}**12** (10 μ M) in buffer. (b) CD spectral change of ctDNA-bound ethidium bromide (**EB**) (10 μ M) upon addition of **D**_{*px*}**12** (20 μ M) in buffer.

Fig. S22 (a) Absorption and (b) emission spectral changes of $D_{px}10$ (10 µM) in presence of ctDNA (20 µM) in buffer containing 2.5 mM NaCl.

Fig. S23 (a) Absorption and (b) emission spectral changes of $D_{px}10$ (10 µM) in presence of ctDNA (20 µM) in buffer containing 5 mM NaCl.

Fig. S24 (a) Absorption and (b) emission spectral changes of $D_{px}10$ (10 µM) in presence of ctDNA (20 µM) in buffer containing 10 mM NaCl.

Fig. S25 (a) Absorption and (b) emission spectral changes of $D_{px}12$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 2.5 mM NaCl.

Fig. S26 (a) Absorption and (b) emission spectral changes of $D_{px}12$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 5 mM NaCl.

Fig. S27 (a) Absorption and (b) emission spectral changes of $D_{px}12$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 10 mM NaCl.

Fig. S28 Changes in (I₀-I)/I₀ (at 545 nm) of (a) $D_{px}10$ (10 µM) and (b) $D_{px}12$ (10 µM) in presence of ctDNA (20 µM) in buffer containing different amount of NaCl.

Fig. S29 (a) Absorption and (b) emission spectral changes of $\mathbf{D}_{px}\mathbf{6}$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 2.5 mM NaCl.

Fig. S30 (a) Absorption and (b) emission spectral changes of $\mathbf{D}_{px}\mathbf{6}$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 5 mM NaCl.

Fig. S31 (a) Absorption and (b) emission spectral changes of $\mathbf{D}_{px}\mathbf{6}$ (10 μ M) in presence of ctDNA (20 μ M) in buffer containing 10 mM NaCl.

Table S6 Average size of $\mathbf{D}_{px}\mathbf{6}$ (10 µM) in buffer and in buffer containing 10 mM NaCl as measured by DLS.

NaCl concentration in buffer	Size (nm)	KCPS
0 mM	95	164
10 mM	184	316

5. Energy Transfer Studies

Overlay integral (*J*) between emission spectra of $D_{px}10$ (5 µM)-Hep (10 µM) and absorption spectra of Nile Red (NR) was calculated to be 9 × 10¹⁴ nm⁴M⁻ ¹cm⁻¹. Calculation was done using FluorTools software.

Fig. S32 Normalized emission spectrum of $D_{px}10$ (5 μ M)-Hep (10 μ M) co-assembly and normalized absorption spectrum of Nile Red (**NR**).

Fig. S33 Energy transfer from $D_{px}10$ (5.0 µM) to NR in presence of (a) 500 nM (b) 5.0 µM and (c) 15 µM Heparin in aqueous buffer.

Fig. S34 Emission spectra of $D_{px}10$ (5.0 µM)-heparin (10 µM) (A)-NR in aqueous buffer. Red trace (donor emission, $\lambda_{ex} = 365$ nm) and blue trace (acceptor emission, $\lambda_{ex} = 586$ nm). Black trace represents emission spectrum of $D_{px}10$ (5.0 µM)-heparin (10 µM) (A) ($\lambda_{ex} = 365$ nm) which was normalized to the intensity at 545 nm of the red trace.

Table S7 ET efficiency (%) of Dpx10-Hep co-assemblies having different concentration ofheparin in presence of Nile Red (NR) at different donor/acceptor ratio.

Donor/accept or ratio	D _{px} 10 (5 μM)- heparin (500 nM μM) (A1)	D _{px} 10 (5 μM)- heparin (5 μM μM) (A2)	D _{px} 10 (5 μM)- heparin (10 μM μM) (A)	D _{px} 10 (5 μM)- heparin (15 μM μM) (A3)
500:1	25	26	36	12
250:1	28	41	50	27
100:1	58	69	69	59

Table S8 Antenna effect (AE) values of Dpx10-Hep co-assemblies having differentconcentration of heparin in presence of Nile Red (NR) at different donor/acceptor ratio.

Donor/accept or ratio	D _{px} 10 (5 μM)- heparin (500 nM μM) (A1)	D _{px} 10 (5 μM)- heparin (5 μM μM) (A2)	D _{px} 10 (5 μM)- heparin (10 μM μM) (A)	D _{px} 10 (5 μM)- heparin (15 μM μM) (A3)
500:1	67	93	110	12
250:1	79	80	98	27
100:1	39	61	73	59

Fig. S35 Energy transfer from (a) $D_{px}12$ (5.0 μ M)-Hep (10 μ M) (**B**) and (b) $D_{px}6$ (5.0 μ M)-Hep (10 μ M) (**C**) to **NR** at different donor-acceptor ratio in aqueous buffer.

Fig. S36 Emission spectra of Nile Red (**NR**) (20 nM) in presence of different co-assemblies in aqueous buffer. ($\lambda_{ex} = 586$ nm)

Table S9 Steady-state emission anisotropy values (**r**) of Nile Red (**NR**) at 625 nm ($\lambda_{ex} = 586$ nm) in presence of **D**_{*px*}**N** (5.0 µM)-heparin (10 µM) co-assemblies in aqueous buffer

Conc. of NR	In aqueous buffer	In presence of D _{px} 6 (5 μM)-Hep (10 μM)	In presence of D _{px} 10 (5 μM)-Hep (10 μM)	In presence of D _{px} 12 (5 μM)- Hep (10 μM)
50 nM	0.066	0.110	0.224	0.253

Fig. S37 Normalized absorption spectra of $D_{px}10$ (5 µM)-Heparin (10 µM), Nile Red (NR) and normalized excitation spectra of $D_{px}10$ (5 µM)-Heparin (10 µM) without Nile Red (NR) ($\lambda_{em} = 545$ nm) and with Nile Red (NR) (50 nM) ($\lambda_{em} = 630$ nm) in aqueous buffer.

Table S10 ET efficiency (%) of DpxN-Hep co-assemblies in presence of Nile Red (NR) atdifferent donor/acceptor ratio.

Donor/accep tor ratio	D _{px} 10 (5 μM)- heparin (10 μM) (A)	D _{px} 12 (5 μM)- heparin (10 μM) (B)	D _{px} 6 (5 μM)-heparin (10 μM) (C)
500:1	36	18	12
250:1	50	32	23
100:1	69	63	39
50:1	73	68	53

Table S11 Antenna effect (AE) values of **D***px***N**-Hep co-assemblies in presence of Nile Red(**NR**) at different donor/acceptor ratio.

Donor/accep tor ratio	D _{px} 10 (5 μM)- heparin (10 μM) (A)	D _{px} 12 (5 μM)- heparin (10 μM) (B)	D _{px} 6 (5 μM)-heparin (10 μM) (C)
500:1	110	87	6
250:1	98	89	5.9
100:1	73	79	2
50:1	44	50	19

Table S12 Average lifetimes (τ_{avg}) of $D_{px}N$ (5 μ M)-Hep (10 μ M) co-assemblies without and with Nile Red (**NR**) in aqueous buffer.

Amount of		Average lifetime (τ _{avg})				
NR	D _{px} 6 (5 μM)-Hep (10 μM)	D _{px} 10 (5 μM)-Hep (10 μM)	D _{px12} (5 μM)-Hep (10 μM)			
Without	18.14 ns	10.34 ns	9.06 ns			
50 nM	14.6 ns	6.48 ns	5.72 ns			

6. Hydrodynamic Diameter Measurements

A. Size measurement of only D_{px}Ns:

I. $D_{px}6$ (10 μ M) in buffer

Results					
			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	94.84	Peak 1:	115.9	94.1	62.07
Pdl:	0.342	Peak 2:	3868	5.9	1247
Intercept:	0.866	Peak 3:	0.000	0.0	0.000
Result quality :	Refer to quality	report			

II. $D_{px}6$ (10 μ M) in buffer containing 10 mM NaCl

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	183.5	Peak 1:	421.4	98.9	465.5
PdI:	0.496	Peak 2:	4626	1.1	735.9
Intercept:	0.927	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

III. $D_{px}10$ (5 μ M) in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	129.4	Peak 1:	168.5	100.0	89.00
Pdl:	0.221	Peak 2:	0.000	0.0	0.000
Intercept:	0.948	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

IV. $D_{px}10 (1 \mu M)$ in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	109.6	Peak 1:	148.4	95.5	107.5
Pdl:	0.298	Peak 2:	3862	3.6	1210
Intercept:	0.881	Peak 3:	21.64	0.9	3.797
Result quality :	Good				

V. $D_{px}10$ (10 μ M) in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	204.3	Peak 1:	289.1	99.6	173.7
PdI:	0.349	Peak 2:	5152	0.4	507.7
Intercept:	0.952	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

VI. $D_{px}12$ (5 μ M) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	133.1	Peak 1:	164.1	99.6	75.46
Pdl:	0.214	Peak 2:	5200	0.4	474.5
Intercept:	0.950	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

VII. $D_{px}12 (1 \ \mu M)$ in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	96.98	Peak 1:	127.0	99.6	68.32
Pdl:	0.232	Peak 2:	4912	0.4	663.0
Intercept:	0.890	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

VIII. $D_{px}12$ (10 μ M) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	164.2	Peak 1:	203.0	99.6	92.32
PdI:	0.181	Peak 2:	31.17	0.4	4.767
Intercept:	0.947	Peak 3:	0.000	0.0	0.000
Beault quality:	Good				

B. Size measurement of D_{px} N-heparin co-assemblies:

A. $D_{px}6$ (5 μ M)-heparin (10 μ M) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	73.42	Peak 1:	90.91	96.0	43.15
Pdl:	0.290	Peak 2:	4966	2.1	685.1
Intercept:	0.811	Peak 3:	15.33	1.9	3.006
Result quality :	Good				

B. $D_{px}10$ (5 μ M)-heparin (10 μ M) in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	124.6	Peak 1:	151.0	99.1	72.20
Pdl:	0.204	Peak 2:	4845	0.9	703.5
Intercept:	0.954	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

C. $D_{px}10 (1 \ \mu M)$ -heparin (2 μM) in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	110.7	Peak 1:	130.3	96.8	64.43
PdI:	0.273	Peak 2:	4806	3.2	746.3
Intercept:	0.938	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

D. $D_{px}12$ (5 μ M)-heparin (10 μ M) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	131.3	Peak 1:	167.6	100.0	83.65
Pdl:	0.214	Peak 2:	0.000	0.0	0.000
Intercept:	0.950	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

E. $D_{px}12 (1 \ \mu M)$ -heparin $(2 \ \mu M)$ in buffer

Results

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	104.5	Peak 1:	132.1	95.9	66.54
PdI:	0.289	Peak 2:	4720	2.2	824.5
Intercept:	0.925	Peak 3:	23.73	1.9	3.639
Result quality :	Good				

C. Size measurement of D_{px}N-ctDNA co-assemblies:

I. $D_{px}6$ (10 µM)-ctDNA (20 µM) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	1021	Peak 1:	1620	97.6	1049
Pdl:	0.453	Peak 2:	147.1	2.4	26.70
Intercept:	0.971	Peak 3:	0.000	0.0	0.000
Desult sugliture	Cood				

II. $D_{px}10 (10 \ \mu M)$ -ctDNA (20 μM) in buffer

Results

III. $D_{px}12 (10 \ \mu M)$ -ctDNA (20 μM) in buffer

			Size (d.nm):	% Intensity:	St Dev (d.n
Z-Average (d.nm):	261.1	Peak 1:	387.9	100.0	296.5
Pdl:	0.275	Peak 2:	0.000	0.0	0.000
Intercept:	0.935	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

7. Zeta Potential Measurements

A. Zeta potential of only D_{px} Ns:

I. $D_{px}6$ (10 μ M) in buffer

Results						
			Mean (mV)	Area (%)	St Dev (mV)	
Zeta Potential (mV):	22.3	Peak 1:	27.3	78.3	6.39	
Zeta Deviation (mV):	9.59	Peak 2:	8.22	21.7	3.95	
Conductivity (mS/cm):	0.366	Peak 3:	43.7	14.9	6.07	
Result quality :	See result quality	/ report				

II. $D_{px}10$ (5 μ M) in buffer

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	23.8	Peak 1:	23.8	100.0	7.64
Zeta Deviation (mV):	7.36	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.224	Peak 3:	0.00	0.0	0.00
Result quality :	Good				

III. $D_{px}10$ (10 μ M) in buffer

Results					
			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	31.6	Peak 1:	31.7	99.9	5.58
Zeta Deviation (mV):	5.56	Peak 2:	5.30	0.1	1.92
Conductivity (mS/cm):	0.366	Peak 3:	0.00	0.0	0.00
Pecult quality :	Good				

IV. $D_{px}12$ (5 μ M) in buffer

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	24.8	Peak 1:	24.9	100.0	6.18
Zeta Deviation (mV):	5.93	Peak 2:	41.4	1.2	1.64
Conductivity (mS/cm):	0.223	Peak 3:	0.00	0.0	0.00

V. $D_{px}12$ (10 μ M) in buffer

Results					
			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	27.8	Peak 1:	27.8	100.0	6.93
Zeta Deviation (mV):	6.79	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.366	Peak 3:	0.00	0.0	0.00
Pesult quality :	Good				

B. Zeta potential of D_{px}N-heparin co-assemblies:

I. $D_{px}6$ (5 μ M)-heparin (10 μ M) in buffer

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-22.9	Peak 1:	-26.8	98.1	5.16
Zeta Deviation (mV):	9.07	Peak 2:	2.25	1.8	2.51
Conductivity (mS/cm):	0.215	Peak 3:	43.7	0.1	1.94
-	. .				

II.	$D_{px}10$	(5	μM)-heparin	(10	μM)	in	buffer
-----	------------	----	-------------	-----	-----	----	--------

Results					
			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-23.1	Peak 1:	-23.1	100.0	8.36
Zeta Deviation (mV):	8.32	Peak 2:	-7.72	11.5	3.18
Conductivity (mS/cm):	0.225	Peak 3:	0.00	0.0	0.00
Result quality :	Good				

III. $D_{px}12$ (5 μ M)-heparin (10 μ M) in buffer

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-23.5	Peak 1:	-24.2	99.7	6.44
Zeta Deviation (mV):	8.68	Peak 2:	80.3	0.3	1.53
Conductivity (mS/cm):	0.231	Peak 3:	0.00	0.0	0.00
Result quality :	See result quality	y report			

C. Zeta potential of D_{px}N-ctDNA co-assemblies:

I. D_{px}6 (10 μM)-ctDNA (20 μM) in buffer

II. $D_{px}10 (10 \ \mu M)$ -ctDNA (20 μM) in buffer

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-36.9	Peak 1:	-36.8	100.0	5.34
Zeta Deviation (mV):	4.75	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.375	Peak 3:	0.00	0.0	0.00
Result quality :	Good				

III. $D_{px}12$ (10 μ M)-ctDNA (20 μ M) in buffer

8. Time-Correlated Single Photon Counting (TCSPC) Measurements

Fig. S38 Time-resolved decay profile of (a) $\mathbf{D}_{px}\mathbf{6}$ (5 μ M), (b) $\mathbf{D}_{px}\mathbf{10}$ (5 μ M) and (c) $\mathbf{D}_{px}\mathbf{12}$ (5 μ M) in DMSO, buffer and in presence of heparin (10 μ M) in buffer. ($\lambda_{ex} = 340$ nm)

Fig. S39 Time-resolved decay profile of (a) $\mathbf{D}_{px}\mathbf{6}$ (10 μ M), (b) $\mathbf{D}_{px}\mathbf{10}$ (10 μ M) and (c) $\mathbf{D}_{px}\mathbf{12}$ (10 μ M) without and with ctDNA (20 μ M) in buffer. ($\lambda_{ex} = 340$ nm)

Fig. S40 Time-resolved decay profile of (a) $\mathbf{D}_{px}\mathbf{6}$ (5 μ M)-heparin (10 μ M), (b) $\mathbf{D}_{px}\mathbf{10}$ (10 μ M)-heparin (10 μ M) and (c) $\mathbf{D}_{px}\mathbf{12}$ (10 μ M)-heparin (10 μ M) without and with Nile Red (**NR**) (D/A = 100:1) in buffer. ($\lambda_{ex} = 340$ nm)

9. NMR Characterizations

A. ¹H NMR of C₆-CHO (500 MHz, CDCl₃):

C. ¹H NMR of C₁₀-CHO (500 MHz, CDCl₃):

C. ¹H NMR of C₁₂-CHO (400 MHz, CDCl₃):

E. ¹H NMR of 6CS (500 MHz, DMSO-D₆):

G. ¹H NMR of 10CS (500 MHz, DMSO-D₆):

S46

I. ¹H NMR of 12CS (400 MHz, DMSO-D₆):

K. ¹H NMR of $D_{px}6$ (400 MHz, DMSO-D₆):

S48

M. ¹H NMR of D_{px}10 (400 MHz, DMSO-D₆):

O. ¹H NMR of D_{px}12 (400 MHz, DMSO-D₆):

S50