Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supporting information

Optoelectronic performance of perovskites Cs₂KMI₆ (M = Ga, In) based on highthroughput screening and first-principles calculations

Fangfang Qi^{a,b,c}, Xin Lv^{a,c}, Jinhui Song^{a,c}, Xifeng Fu^{a,b,c}, Lingyi Meng^{a,b,c,*}, and Can-Zhong Lu^{a,b,c,d,*}

- a CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- b College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R.
 China
- c Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- d University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*Corresponding authors.

E-mail address: lymeng@fjirsm.ac.cn (L. Meng) and czlu@fjirsm.ac.cn (C. Lu)

Site	Ion type	Radius(Å)	Site	Ion type	Radius(Å)
	Cs ⁺	1.88		Al^{3+}	0.535
	K^+	1.64		As ³⁺	0.58
А	Na ⁺	1.39		Au ³⁺	0.85
	Rb^+	1.72		Bi ³⁺	1.03
	Ag ⁺	1.15	M(III)	Ga ³⁺	0.62
	Au ⁺	1.37		In ³⁺	0.80
	Cu ⁺	0.77		Sb ³⁺	0.76
	In ⁺	0.80		Sc ³⁺	0.745
M(I)	K^+	1.38		Y^{3+}	0.9
M(1)	Li^+	0.76		F	1.33
	Na ⁺	1.02		Cl	1.81
	Rb^+	1.52	X	Br	1.96
	Tl^+	1.50		Ĺ	2.2
	Cs^+	1.67			

Table S1. Shannon radius of elements in site A, M(I), M(III) and X^1 .

Figure S1. The structural factors of A₂M(I)M(III)X₆ compounds.

Figure S2. Bandgaps distribution of $1026 A_2 M(I) M(III) X_6$ perovskite compounds derived from the Materials Project database².

Compound	ΔH_D^P (eV)	Compound	$\Delta H_D^P (\mathbf{eV})$
Cs ₂ AgAlBr ₆	0.1058	Cs ₂ TlAsI ₆	0.0446
Cs2AgGaCl6	0.1372	Cs ₂ TlSbBr ₆	0.0517
Cs ₂ AgInCl ₆	0.1213	K ₂ AgGaCl ₆	0.0866
Cs ₂ InBiBr ₆	0.0046	K ₂ AgInCl ₆	0.0733
Cs ₂ InSbCl ₆	0.0043	K ₂ AuAlCl ₆	0.1207
Cs ₂ KGaI ₆	0.0307	K ₂ InSbCl ₆	-0.0435
Cs ₂ KInI ₆	0.0262	Rb ₂ AgGaCl ₆	0.1028
Cs ₂ KTlBr ₆	0.0553	Rb ₂ AgInCl ₆	0.0883
Cs ₂ LiTlBr ₆	0.0641	Rb ₂ AuAlCl ₆	0.1381

Table S2. Predicted decomposition energies ΔH_D^P of 23 A₂M(I)M(III)X₆ perovskite compounds³.

Cs ₂ NaTlBr ₆	0.0576	Rb ₂ InSbCl ₆	-0.0276
Cs ₂ RbGaI ₆	0.0292	Rb ₂ TlAsBr ₆	0.0359
Cs ₂ TlAsBr ₆	0.0682		

Figure S3. Bandgaps and structural factors of 13 selected $A_2M(I)M(III)X_6$ perovskite compounds, based on the Materials Project database².

Table S3. The calculated elastic constants C_{11} , C_{12} , C_{44} , bulk modulus B, shear modulus G, Pugh's ratio (B/G), Poisson's ratio v⁴ of Cs₂KMI₆ (M = Ga, I) based on the PBE functional⁵.

	C ₁₁ (GPa)	C ₁₂ (GPa)	C ₄₄ (GPa)	$C_{11} - C_{12}$	$C_{11} + 2C_{12}$	B (GPa)	G (GPa)	B/G	v
Cs ₂ KGaI ₆	26.39	7.85	7.13	18.54	42.09	14.03	7.99	1.76	0.261
Cs ₂ KInI ₆	26.88	7.18	5.27	19.7	41.24	13.75	7.11	1.93	0.280

Table S4. Calculated formation energies for $Cs_aK_bM_cI_d$ (M = Ga, In) based on the PBE functional⁵.

Compound	Cs2KGaI6	Cs ₂ KInI ₆	CsI	KI	CsK2
$\Delta H_{Cs_aK_bM_cI_d}(eV)$	-13.54	-13.82	-3.13	-3.00	-3.07
Compound	GaI ₃	Ga ₂ I ₃	CsGa ₃	CsGa7	KGaI4
$\Delta H_{Cs_aK_bM_cI_d}(eV)$	-2.01	-2.22	-0.67	-1.04	-5.31
Compound	InI	InI ₂	InI ₃	CsIn ₃	Cs ₂ In ₃
$\Delta H_{Cs_aK_bM_cI_d}(eV)$	-0.97	-1.58	-2.03	-0.60	-0.87

Figure S4. Calculated formation enthalpies $\Delta H_{D,q}$ of intrinsic defects in Cs₂KMI₆ (M = Ga, In) as the function of Fermi level E_f, corresponding the representative chemical potential points in Fig. 2: (a) A (Garich), (b) B (Ga-poor), (c) C (In-rich) and (d) D (In-poor). The solid lines show the trend of formation

enthalpies of the most stable charge states at particular defects change with Fermi level. The grey dashed lines represent the defects with high $\Delta H_{D,q}$ s. The slope of the line segment corresponds the charge state q, while the turning points correspond the charge-state transition energy levels. The Fermi level is aligned to the VBM of pristine crystals⁶. Charge-state transition levels of the major intrinsic defects: (e) Cs₂KGaI₆ (f) Cs₂KInI₆.

Figure S5. Total and projected density of states (TDOSs and PDOSs) of (a) Cs_2KGaI_6 and (b) Cs_2KInI_6 . The calculations are based on the HSE06 functional^{7, 8}.

REFERENCES

- 1 R. D. Shannon, Acta Cryst. A, 1976, **32**, 751-767.
- 2 Materials Project database, <u>https://materialsproject.org/</u>.
- 3 Q. Sun and W. J. Yin, J. Am. Chem. Soc., 2017, 139, 14905-14908.
- 4 M. Born, K. Huang and M. Lax, *Am. J. Phys.*, 1955, **23**, 474-474.
- 5 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 6 J. Xu, J. B. Liu, B. X. Liu and B. Huang, J. Phys. Chem. Lett., 2017, 8, 4391-4396.
- 7 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2004, 118, 8207-8215.
- 8 J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber and J. G. Angyan, J. Chem. Phys., 2006, 124, 154709.