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Text S1. Brief introduction of Random Forest, XGBoost,

Extra Trees, Gradient Boosting and Neural Network

Random Forest (RF) is one of the most used algorithms in regression and classification

models.1–3 RF is an ensemble method based on a set of decision trees, with each tree having

a collection of random variables. The RF algorithm employs randomness when developing

the tree architecture, which results in a great diversity producing a better model when

compared to other decision tree models.4,5

The Gradient Boosting (GB) algorithm is a machine learning technique for regression and

classification problems that generates a prediction model as a collection of weak prediction

models, typically decision trees. As with previous reinforcement methods, it develops the

model in stages and generalizes them to enable the optimization of an arbitrary loss function.

The goal of the algorithm is to generate a series of weak models, each of which aims to

minimize the error of the previous model, through the use of a loss function.6,7

Another algorithm used to predict the functional groups was eXtreme Gradient Boosting

(XGB) – a method based on a Gradient Boosting decision tree.8This algorithm was developed

under the same GB framework and to be highly efficient, flexible, and portable. XGB

provides a parallel tree reinforcement that solves many data science problems quickly and

accurately and has therefore been widely used in recent literature.9–12

The ExtraTrees (Extremely Randomized Trees) machine learning method generates a

large number of decision trees at random and then combines the outputs of each tree to

determine the final answer. Its main difference is that this process is extremely random,

thereby contributing to models that are more generalizable. This entire procedure is quite

similar to what occurs in the Random Forest method, which likewise generates decision trees

at random and uses each tree to determine the outcome. The distinction between the two

algorithms resides in the amount of random processes employed by each.13–15

Finally, the last algorithm used in this work was the neural network (NN). This algorithm
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is based on a series of units organized and connected in sequential layers.16,17Neural network

architecture involves an input layer, several layers and an output layer. The units are the

neurons, with neurons within the same layer acting in parallel and transforming the input

values received from the previous layer into a scalar value.

The hyperparameters of each machine learning model used in this work are listed in

JSON file called "hyperparameters.json".

Text S2. Brief introduction of similarity and Tanimoto

coefficient

One of the fundamental issues in the development of QSAR/QSPR models is the model’s

applicability domain.18–20 The developed models are limited to a set of data they are trained

on – thus limiting their domain. The larger the data set used, the greater the applicability

domain of that model. However, the data set available for a given protocol is still small.

In this sense, it is useful to use methods that search for similarity between the training set

used in the model and for a data set not trained by the model – either the test set or a new

available data. Among these methodologies, the most used approach to calculate the simi-

larity between two compounds is through the Tanimoto coefficient.21 An easily understood

example to show how to calculate similarity based on the Tanimoto coefficient can be found

here: https://docs.eyesopen.com/toolkits/python/graphsimtk/measure.html.

Text S3. Brief introduction of SHAP

Another fundamental requirement in developing a QSAR model is understanding how the

model performed a prediction. In this sense, a recent unified approach to interpreting model

predictions, SHAP (SHapley Additive exPlanations),22 which sheds light on the black box

of ML algorithms, was developed to elucidate the most important features learned by the
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model.23 The SHAP approach was derived from cooperative game theory – primarily de-

veloped to estimate the importance of each player on a team.24 For this, a reward for each

player is carried out depending on their importance and their contributions to the result of a

game. For our case – using SpectraFP – the Shapley values provide a solution for assigning

a fair or reasonable reward to each of the spectraFP variables. The following equation is

used to calculate the Shapley value Φi:

Φi(p) =
∑
S⊆n/i

|S|!(n− |S| − 1)!

n!
(p(S ∪ i)− p(S)) (1)

where p(S) corresponds to the ouput of the ML model to be explained using a set S of

features, and n is the complete set of all features. The final contribution or Shapley value of

feature i(Φi) is determined as the average of its contributions across all possible permutations

of a feature set. The predictions for all possible subsets S ⊆ N are calculated because the

effect of withholding a feature depends on all other features in the model.

Text S4. SHAP analysis

The Spectral Database for Organic Compounds (SDBS)25 was consulted for all experimental

13C chemical shifts referenced in the SHAP discussions below. Furthermore, the spectra of

the compounds discussed below can be accessed at https://sdbs.db.aist.go.jp.

FG2 group (Alcohol)

In the 50-80 ppm range of an NMR spectra, C-O bonds are regularly observed. Clearly, the

fluctuation of a given signal is caused by the electronegativity of nearby atoms deshielding

the carbon atom. For example, the signal for the C-O carbon of the 2-propanol compound is

64.04 ppm, while the similar signal for the 1-amino-2-propanol compound is 68.01. Following

this logic and observing the most significant variables brought by the SHAP analysis for

the FG2 group (Figure S1), it is reasonable to conclude that these variables fall within
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the range of chemical shifts observed in the laboratory, thereby validating that the models

make decisions based on physically coherent variables for this group. In addition, the most

important variables of the two models, GB and XGB, presented very similar values, with

variations of approximately 62-77 ppm in both cases. However, it is observable that the first

most important variable (65.8-66.4) for the GB model had a significantly bigger influence on

the model decision than the other variables, whereas the XGB model exhibited a broader

distribution of importance across the other variables.

Figure S1: SHAP analysis of GB and XGB models for group FG2.

FG4 group (Carboxylic Acid Derivatives)

The FG4 group has a high level of "model understanding" complexity due to its high cov-

erage, i.e., there are numerous forms of carboxylic acid derivatives, such as amides and the

exchange of the C-OH group for a halogen (e.g., C-Br), therefore the chemical shifts to char-

acterise this entire range of groups can vary significantly. Despite this, the typical range of

13C signals from this group is between 150 and 200 ppm. Figure S2 depicts the important

variables used by the GB and XGB models to determine the existence or absence of this

group inside a spectra. The GB model presented variables in a wider range of spectra areas,

with the smallest variable represented by 95.9 ppm and the largest variable represented by
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205.7 ppm. The ppm ranges 176.4-177.0, 166.6-167.2, and 129-130.1 have a higher impact

on the final decision, as the first three factors carry a far greater weight than the remaining

features. The first two variables explain the vast majority of carboxylic acid derivatives,

whereas the third variable refers to the alpha aromatic carbon attached to the carboxylic

acid group. On the other hand, the first nine most important variables for the XGB model

are concentrated between 165.9 and 172.1 ppm, resulting in less noise in the model’s de-

cision and a more uniform coverage of derivatives such as esters, amides, anhydrides, and

acid halides. Moreover, the variable weights (SHAP value) are more uniformly distributed

throughout the first 10 variables compared to the GB, indicating that more variables would

be considered in the model outcome.

Figure S2: SHAP analysis of GB and XGB models for group FG4.

FG5 group (Carboxylic Acid or Ester)

The FG5 group includes carboxylic acids and esters since the most significant carbon (C=O)

in these two groups has a similar chemical shift region. In addition, it is usual to find the

alpha carbonyl carbon between 20 and 30 ppm; for instance, the alpha carbonyl carbon

of propionic acid (Figure S3 A) and ethyl propionate (Figure S3 B) is 27.6 and 27.7 ppm

respectively. The chemical shift of the carbons of the ester part decreases as they get further
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away from the oxygen atom; carbon 4 of ethyl propionate has a chemical shift of 14.3 ppm,

while carbon 2 is 60.26 ppm. It is common to find carbons similar to carbon 2 of ethyl

propionate in the range between 50 to 65 ppm.

Figure S3: Structural representation of propionic acid (A) and ethyl propionate (B) and
their chemical shift signals according to the SDBS database.

The SHAP analysis for the GB and XGB models pertaining to the FG5 group is depicted

in Figure S4. The most significant variables in both models were nearly identical. In addition,

it is reasonable to conclude that all chemical shift ranges deemed crucial for model selection

are consistent with the experimental chemical shifts. Notably, the ten most relevant variables

have similar weights in regard to model decisions, therefore the two models tend to make

decisions based on carbonyl carbons as well as shielded carbons close to the group C=O or

C-O.

Figure S4: SHAP analysis of GB and XGB models for group FG5.

7



FG6 group (Aromatic compounds)

The FG6 group refers to carboxylic and heterocyclic aromatic groups. Aromatic carbons are

well known and classic in 13C NMR spectra, having a chemical shift range between 125 to

170 ppm. Figure S5 shows the ten most important features for the GB and XGB models;

the chemical displacement ranges for the two models are nearly identical, ranging from 126.0

to 134.3 ppm for the GB model and 126.0 to 139.2 ppm for the XGB model. Thus, all of

the most important variable of both models fall within the expected range of chemical shift,

and it can be argued that the models forecast based on factors that are consistent.

Figure S5: SHAP analysis of GB and XGB models for group FG6.
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Table S1: Results of statistical parameters F1 and κ, from external validation, for all five
models developed to predict the six functional groups.

External Validation
RF XGB ET GB NN

F1 κ F1 κ F1 κ F1 κ F1 κ
FG1 0.960 0.917 0.963 0.915 0.960 0.916 0.961 0.913 0.959 0.908
FG2 0.844 0.661 0.839 0.665 0.847 0.661 0.837 0.667 0.848 0.670
FG3 0.836 0.654 0.839 0.651 0.830 0.648 0.850 0.670 0.845 0.670
FG4 0.876 0.734 0.875 0.724 0.872 0.727 0.871 0.728 0.870 0.718
FG5 0.855 0.680 0.868 0.705 0.854 0.681 0.868 0.700 0.855 0.679
FG6 0.931 0.724 0.934 0.745 0.932 0.718 0.936 0.755 0.938 0.764

Table S2: External MCC values for the trained models of all FG with random sets of the
dependent variable (y) drawn from three random seeds.

Y-randomization
RF XGB ET GB NN

seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3
FG1 0.010 0.063 0.022 0.073 0.033 0.043 0.008 0.039 0.023 0.053 0.041 0.104 0.036 0.033 0.001
FG2 0.014 0.034 0.041 0.005 0.033 0.015 0.019 0.018 0.027 0.011 0.037 0.040 0.008 0.024 0.040
FG3 0.034 0.010 0.066 0.015 0.003 0.046 0.033 0.005 0.040 0.001 0.041 0.023 0.021 0.017 0.067
FG4 0.032 0.024 0.048 0.056 0.062 0.049 0.015 0.024 0.080 0.030 0.110 0.048 0.053 0.017 0.002
FG5 0.047 0.012 0.028 0.019 0.018 0.030 0.031 0.017 0.009 0.038 0.017 0.009 0.015 0.040 0.007
FG6 0.005 0.031 0.025 0.001 0.036 0.042 0.001 0.048 0.032 0.004 0.007 0.027 0.029 0.002 0.005

Table S3: Thresholds of similarity, number of compounds outside the AD (NCOAD), and
corresponding MCC for each model for all FGs.

Applicability Domain
RF XGB ET GB NN

Threshold MCC NCOAD Threshold MCC NCOAD Threshold MCC NCOAD Threshold MCC NCOAD Threshold MCC NCOAD
FG1 0.15 0.917 0 0.15 0.915 0 0.17 0.927 1 0.17 0.925 1 0.15 0.908 0
FG2 0.15 0.662 0 0.15 0.668 0 0.15 0.661 0 0.15 0.668 0 0.15 0.671 0
FG3 0.17 0.662 0 0.17 0.654 0 0.17 0.653 0 0.17 0.671 0 0.17 0.672 0
FG4 0.17 0.735 0 0.17 0.724 0 0.17 0.727 0 0.19 0.742 3 0.17 0.718 0
FG5 0.18 0.680 0 0.18 0.706 0 0.18 0.682 0 0.2 0.751 8 0.18 0.679 0
FG6 0.2 0.732 0 0.17 0.749 0 0.17 0.730 0 0.17 0.760 0 0.17 0.765 0

9



FG1 FG 2

FG 3 FG 4

FG 5 FG 6

ROC Curve

Figure S6: ROC Curve of all five ML models, as well as the respective AUC values covering
all FGs, in which the value 1 of AUC represents a perfect classification and 0.5 indicates
random classification. The AUC value is 0.5 when the curve is superimposed on the dashed
line.
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