Electronic Supplementary Information

An investigation of Al₂O₃ induced variations in the structural parameters in strontium borosilicate glasses using solid state NMR

Kavya Illath,^{a,b}Prasanta K. Ojha,^c Sangram K Rath,^c and T.G. Ajithkumar^{a,b*}

a. Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India

b. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

c. Naval Materials Research Laboratory, Ambernath, Thane421506, Maharashtra, India

Table –	S1:	Radius	of	oxide	ions	and	modifier	atom ¹	-3

Oxide ions	Radius (Å)
SrO	1.4
AlO ₆	1.4
AlO ₅	1.334
AlO ₄	1.437
BO_4	1.204
BO ₃	1.187
SiO_4	1.306
Sr ⁺² ion in SrO	1.18
Al ⁺³ ion in AlO ₆	0.535

Table – S2: Molar volume and oxygen number density of the glass samples

Glass Code	Molar Volume (cc/mol)	Oxygen number Density (Angstrom ⁻³)
SBS	24.97	0.0523
SABS 5	25.44	0.051

SABS 10	25.76	0.0499
SABS 15	25.94	0.0492
SABS 20	26.69	0.0474
SABS 25	27.31	0.046
SABS 30	27.79	0.0448

Calculation of Oxygen packing fraction

The oxygen packing fraction is calculated using Equation 2. The details of the calculation of the oxygen packing fraction of one of the glass materials are explained below. In the case of SBS, the Vo in Equation 2 is calculated as,

$$Vo = \frac{4}{3}\pi \frac{F_{BO_3}C_{BO_3}r_{BO_3}^3 + F_{BO_4}C_{BO_4}r_{BO_4}^3 + F_{SiO_4}C_{SiO_4}r_{SiO_4}^3}{F_{BO_3}C_{BO_3} + F_{BO_4}C_{BO_4} + F_{SiO_4}C_{SiO_4}}$$

Where F_{BO3} , F_{BO4} , and F_{SiO4} are the fraction of BO₃, BO₄ and SiO₄ respectively and C_{BO3} , C_{BO4} and C_{SiO}

 C_{SiO_4} are the coordination number and r_{BO3} , r_{BO4} , r_{SiO4} are the radii of the BO₃, BO₄ and SiO₄ units respectively. The ρ_o is calculated by using Equation No. 1. The V_M ρ_M of the modifier atom (in these case Sr) is further calculated by Equation 5.

$$V_{M}\rho_{M} = \frac{4}{3}\pi r_{Sr^{2}}^{3} \rho_{Sr}$$

Where $r_{Sr^{2}+}$ is the radii of the Sr²⁺ in the SrO and ρ_{Sr} is the number density of the Sr atoms. In the case of Al incorporated samples, AlO₅ and AlO₆ were also included in the calculation of V_M ρ_{M} . The ρ_{Sr} can be calculated using the following equation.

$$\rho_{Sr} = \frac{N_{Sr}N_{av}}{Vm}$$

 N_{Sr} is the number of Sr atoms in the composition, calculated from the molecular formula. N_{avo} is the Avogadro number, and Vm is the molar volume

¹¹B deconvolution procedure

The quadrupolar coupling constant (Cq) and asymmetric constant (η) value of the different borate species are deduced from the fitting of the ¹¹B MQMAS spectra (shown in Fig S1). These parameters are used for deconvoluting the ¹¹B MAS spectra. The consistency in the

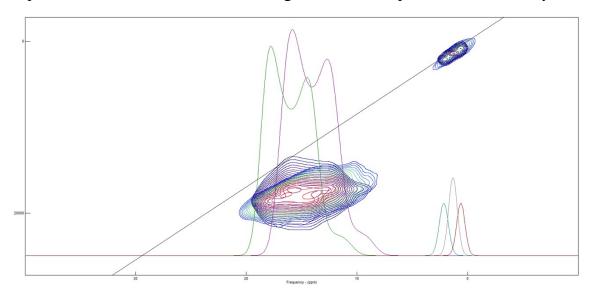


Fig. S1. ¹¹B MQMAS NMR spectra of SABS 30 fitted with two components for the BO₃ species and three for the BO₄ species.

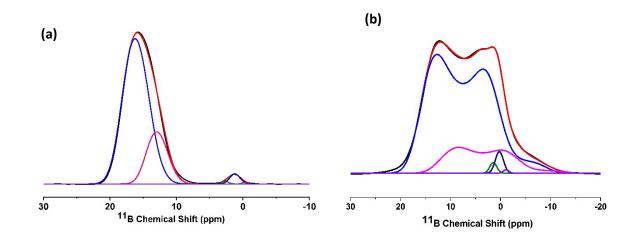


Fig. S2. ¹¹B MAS NMR spectra of SABS 30 (Black, Experimental; Red, Fitted) recorded at (a) 16.5T and (b) 9.4T accompanied by its components (Blue, ^[3]B (non-ring); Magenta, ^[3]B (ring); Green, ^[4]B (0B, 4Si); Indigo, ^[4]B (1B,3Si); Violet; ^[4]B (2B,2Si)) derived from deconvolution.

fitting parameters were further checked by deconvoluting the spectra recorded at different field strengths. The deconvoluted spectra of SABS 30 recorded at two field strengths (16.5T and 9.4T

are given in Fig S2. The deconvolution of the spectra from both field strengths gives the same values for the parameters Cq and η for B (III) and B (IV) units. However, the percentage of occupancy of these species is different in both cases. It is observed that the 2.5mm triple resonance probe of the Bruker 700MHz (16.5T) spectrometer gives a background signal which leads to the wrong estimation of the percentage of occupancy of the B (III) and the B (IV) units. Thus the ¹¹B NMR data from Jeol 400 MHz (9.4T) has been used for the deconvolution and the quantitative estimation of different sites.

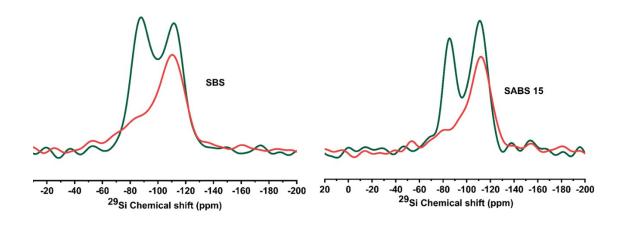


Fig. S2 ²⁹Si static (Red) and MAS NMR (Green) of SBS and SABS 15 glasses

References

- 1 R. D. Shannon and C. T. Prewitt, Effective ionic radii in oxides and fluorides, *Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.*, 1969, **25**, 925–946.
- B. C. Bunker, R. J. Kirkpatrick and R. K. Brow, Local Structure of Alkaline-Earth Boroaluminate Crystals and Glasses: I, Crystal Chemical Concepts—Structural Predictions and Comparisons to Known Crystal Structures, *J. Am. Ceram. Soc.*, 1991, 74, 1425–1429.
- L. S. Du and J. F. Stebbins, Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses, *J. Non. Cryst. Solids*, 2003, **315**, 239–255.