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Figure S1: Electron donors tested in this study.

Table S1: Driving force for photoinduced electron transfer, —AGgr, between the cationic [6]he-
licenes 1 and 2 and the electron donors in polar solvent estimated from the Weller equation with
the redox potentials of the reactants.

A/D ~AGgr / eV Frea(A)/ V. vs. SCE Eox(D)/ V. vs. SCE
1/TrP 0.86 -0.524 0.77°
2/TrP 0.49 -0.85¢ 0.77°
1/BINOL 0.73 -0.52 0.90¢
1/Pro 0.22 -0.52 1.414
2/Pro -0.10 -0.85 1.41
1/DMPEA 0.89 -0.52 0.74¢
2/DMPEA 0.36 -0.52 0.74

@ from ref.1; ® from ref.2;¢ value for naphthol from ref.3; ¢ from ref.4; ¢ from ref.5.



S2 Stationary spectroscopy
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Figure S2: CD and absorption spectra measured with 1 and 2 in water (top), and stationary
absorption and emission spectra of 1 in different solvents (bottom).



S3 Time-correlated single photon counting
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Figure S3: TCSPC fluorescence decays measured with 1 in various solvents and best-fits of the
convolution of the instrument response function (grey) with a single exponential function.



S4 Femtosecond fluorescence up-conversion
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Figure S4: Pure quenching dynamics of the fluorescence of the two enantiomers of 1 with 0.15 M of
either BINOL enantiomer in DCM.
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Figure S5: Pure quenching dynamics of the fluorescence of the two enantiomers of 1 with 0.15 M of
either BINOL enantiomer in THF.



S5 Electronic transient absorption spectroscopy (TA)
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Figure S6: Comparison of the evolution-associated difference spectra (EADS) obtained from the
global analysis of the transient-absorption data measured with (-)-1 with 50 mM of either D-Trp
or L-Trp in 60:40 (v/v) water/ethanol (top) and 90:10 (v/v) water/ACN (bottom). Because of the
larger IRF at shorter wavelength, the shape of EADS A below 420 nm should be considered with

caution.
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Figure S7: A) Comparison of the evolution-associated difference spectra obtained from the global
analysis of the transient-absorption data measured with (+)-1 with 50mM of either (+)- or (-)-
BINOL in ACN. An early transient absorption spectrum recorded with (+)-1 alone is also shown.
B) Time evolution of the transient absorption at 360 nm (dashed line in panel A).
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Figure S8: A) Comparison of the evolution-associated difference spectra obtained from the global
analysis of the transient-absorption data measured with (4)-1 with 0.15M of either (+)- or (-)-
BINOL in DCM.



S6 Molecular dynamics simulations and quantum-chemical calcu-
lations

The potential for the dihedral angle of BINOL was described as:

Va(9) = kg(1 + cos(ng — ¢s)). (S1)

The parameters were determined by fitting eq.S1 to the potential obtained from relaxed-scan cal-
culations of the energy of BINOL as a function of the dihedral angle, ¢. The best-fit parameters
were: kg = 35.89kJ/mol; ¢,=88.3deg. and n = 1. The force-field parameters for BF; were taken
from ref.6.

Non-bonded interactions were evaluated with a cutoff of 1.4 nm, and long-range electrostatic
interactions were accounted for by the particle mesh Ewald method,[7] with 0.12 nm grid spacing
and forth-order interpolation. A long-range dispersion correction for energy was also included. The
LINCS algorithm|[8| was used to constrain the bonds of all system components with the exception
of water, for which the SETTLE algorithm was applied.[9] The equilibration of the system was
ensured by inspecting the total energy drift. The isothermal-isobaric ensemble, NPT, was used for
all productions with the v-rescale thermostat at 295 K,[10] and the Parrinello-Rahman barostat at
1 atm using coupling constants of 0.5 ps and 3 ps respectively.[11]

For the simulations of 1 and one Trp, the 5x5x5nm? box was filled with 4209 water molecules.
For the simulations of 1 and 11 BINOL, the box was filled with 1420 molecules of acetonitrile. For
the simulations with one BINOL, either 1440 acetonitrile or 924 THF molecules were added.
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Figure S9: Histograms of the centre-of-mass AD distance (A) and radial-distribution functions (B)
obtained from 50ns MD trajectories of (—)-1 and Trp in water.
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Figure S10: Frontier molecular orbitals of 1, Trp and BINOL calculated at the DFT level (B3LYP/6-
31G+d).
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Figure S11: Histograms of the minimum AD distance obtained from 50ns MD trajectories of (-)-1
and one BINOL molecule in acetonitrile.
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Figure S12: Radial-distribution functions obtained from 50ns MD trajectories of (-)-1 and 11
BINOL molecules in acetonitrile.
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Figure S13: Histograms of the centre-of-mass AD distance obtained from 50ns MD trajectories of
(-)-1 and one BINOL molecule in THF.
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Figure S14: Histograms of the minimum (A) and centre-of-mass distance (B) between (-)-1 and
BF; obtained from 50ns MD trajectories in acetonitrile and THEF.
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