Electronic Supplementary Information

Tetrahydroacridine derivative and its conjugate with gold nanoparticles:

Promising agents for the treatment of Alzheimer's disease

Ilona Mojzych¹, Anna Zawadzka¹, Katarzyna Kaczyńska^{2,*}, Piotr Wojciechowski², Dominika Zając², Maciej Chotkowski¹, Katarzyna Wiktorska^{3,4}, Jan K. Maurin³, Maciej Mazur^{1,*}

¹ Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

² Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish

Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland

³ National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland

⁴ Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life

Sciences - SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland

*corresponding authors

Scheme S1. Chemical structure of tacrine.

Empirical formula	C ₁₅ H ₂₁ Cl ₂ N ₃ O ₂		
Formula weight	346.25		
Temperature	293(2) K		
Wavelength	1.54178 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 7.0963(5) \text{ Å}, \alpha = 111.519(6)^{\circ}$		
	$b = 9.7638(7) \text{ Å}, \beta = 96.992(5)^{\circ}$		
	$c = 12.7882(7) \text{ Å}, \gamma = 92.865(6)^{\circ}$		
Volume	813.85(9) Å ³		
Ζ	2		
Density (calculated)	1.413 Mg/m ³		
Absorption coefficient	3.679 mm ⁻¹		
F(000)	364		
Crystal size	0.1914 x 0.0456 x 0.0246 mm ³		
Theta range for data collection	3.76 to 69.92°		
Index ranges	-8≤h≤7, -11≤k≤11, -15≤l≤15		
Reflections collected	14996		
Independent reflections	3030 [R(int) = 0.0764]		
Completeness to theta = 69.92°	98.2 %		
Absorption correction	Analytical		
Max. and min. transmission	0.924 and 0.691		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3030 / 0 / 221		
Goodness-of-fit on F ²	0.762		
Final R indices [I>2sigma(I)]	R1 = 0.0364, wR2 = 0.0702		
R indices (all data)	R1 = 0.0880, wR2 = 0.0791		
Extinction coefficient	0.0016(2)		
Largest diff. peak and hole	0.245 and -0.204 e·Å ⁻³		

Table S1. Crystal data and structure refinement for CHDA

Fig. S1. The view of crystal packing in the b direction. The molecules are shown in a ball-andsticks representation. The N-H…O, O-H…O and N-H…Cl hydrogen bonds are shown as the dashed lines.

D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)	
N(1)-H(1)…Cl(2)	0.87(2)	2.33(3)	3.198(2)	170(2)	
N(15)-H(15)····Cl(2)#1	0.84(2)	2.57(3)	3.330(2)	151(2)	
N(18)-H(18)····O(1)	0.87(3)	2.06(3)	2.883(3)	158(3)	
O(1)-H(1A)····O(2)	0.81(4)	1.97(4)	2.758(4)	165(4)	
O(1)-H(1B)····Cl(2)#2	0.81(4)	2.44(4)	3.243(3)	172(4)	
O(2)-H(2A)····Cl(2)#3	0.78(4)	2.45(4)	3.232(3)	177(5)	
O(2)-H(2B)···O(1)#4	0.80(5)	2.04(5)	2.835(4)	175(5)	

Table S2. Hydrogen bonds for CHDA [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z #2 -x,-y+2,-z+2 #3 x,y+1,z+1 #4 -x+1,-y+3,-z+3

Fig. S2. UV VIS absorption spectra of CHDA recorded in various solvents.

Fig. S3. Schematic diagram of the determination of the charge associated with one-electron oxidation of CHDA adsorbed on the gold electrode surface (the charge is equal to the difference of Q_1 and Q_2).

Fig. S4. Dependence of surface concentration of redox species giving oxidation peaks at 0.35 V (both isomeric forms) as a function of voltammetric cycle number.

Fig. S5. XPS survey spectrum of CHDA/AuNps conjugate.

Fig. S6. Purification of CHDA/¹⁹⁸AuNps conjugates by dialysis. Activity (left axis) and % of initial activity (right axis) of conjugate solution versus dialysis time.