Support Information

Single-atom supported on MXenes for alkaline hydrogen evolution reaction: species, coordination environment, and action mechanism

Zijun Sun ^{1,2}, Rui Li ^{1,2,*}, Qing Xi ^{1,2}, Fangxia Xie ^{1,2}, Xuan Jian ³, Xiaoming Gao ³, Houfen

Li¹, Zhuobin Yu¹, Jianxin Liu^{1,2}, Xiaochao Zhang², Yawen Wang², Yunfang Wang², Xiuping

Yue 1,2,*, Caimei Fan 1,2

¹ College of Environmental Science and Engineering, Taiyuan University of Technology,

Taiyuan 030024, P. R. China

² College of Chemical Engineering and Technology, Taiyuan University of Technology,

Taiyuan 030024, P. R. China

³ College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical

Reaction Engineering, Yan'an University, Yan'an 716000, P. R. China

*Co-corresponding author.

Tel.: +86 13233699182; +86 13068076599; fax: +86 351 6018554.

E-mail address: lirui13233699182@163.com (Li R); yuexiuping@tyut.edu.cn (Yue XP).

Mo-based MXenes	$\Delta G_{*H2O}(eV)$	$\Delta G_{*H-OH}(eV)$	$\Delta G_{*H}(eV)$	$\Delta G_{*OH}(eV)$
Mo ₂ CO ₂	0.486	2.204	-0.430	-2.291
Mo ₂ TiC ₂ O ₂	0.348	2.767	-0.373	-2.658
$Mo_2Ti_2C_2O_2$	0.379	2.775	-0.229	-2.553

 Table S1 Mo-based MXenes alkaline HER performance descriptor.

Table S2 Ground state magnetic moment of TM single atom in TM-Mo₂Ti₂C₃O₂ systems (in Bohr magnetons, μ B).

$TM-Mo_2Ti_2C_3O_2$	Magnetic moment (μB)	TM-Mo ₂ Ti ₂ C ₃ O ₂	Magnetic moment (µB)
Fe _A -Mo ₂ Ti ₂ C ₃ O ₂	0	Co _A -Mo ₂ Ti ₂ C ₃ O ₂	0
Fe _B -Mo ₂ Ti ₂ C ₃ O ₂	3.277	Co _B -Mo ₂ Ti ₂ C ₃ O ₂	-0.004
Fe _s -Mo ₂ Ti ₂ C ₃ O ₂	2.952	Co _s -Mo ₂ Ti ₂ C ₃ O ₂	0.005
Ni _A -Mo ₂ Ti ₂ C ₃ O ₂	0	Ru _A -Mo ₂ Ti ₂ C ₃ O ₂	0
Ni _B -Mo ₂ Ti ₂ C ₃ O ₂	0	Ru _B -Mo ₂ Ti ₂ C ₃ O ₂	2.574
Ni _s -Mo ₂ Ti ₂ C ₃ O ₂	0	Ru _s -Mo ₂ Ti ₂ C ₃ O ₂	1.970
Rh_A - $Mo_2Ti_2C_3O_2$	0	Pd _A -Mo ₂ Ti ₂ C ₃ O ₂	0
$Rh_{B}\text{-}Mo_{2}Ti_{2}C_{3}O_{2}$	1.645	Pd_B - $Mo_2Ti_2C_3O_2$	0.291
Rh_{s} - $Mo_{2}Ti_{2}C_{3}O_{2}$	0.668	$Pd_{S}\text{-}Mo_{2}Ti_{2}C_{3}O_{2}$	0
Os_A - $Mo_2Ti_2C_3O_2$	0	Ir_A - $Mo_2Ti_2C_3O_2$	0
Os_B - $Mo_2Ti_2C_3O_2$	2.598	Ir_B -Mo ₂ Ti ₂ C ₃ O ₂	1.582
Os _s -Mo ₂ Ti ₂ C ₃ O ₂	1.964	Ir_s -Mo ₂ Ti ₂ C ₃ O ₂	0.276
$Pt_A\text{-}Mo_2Ti_2C_3O_2$	0		
$Pt_B\text{-}Mo_2Ti_2C_3O_2$	0.716		
Pt _s -Mo ₂ Ti ₂ C ₃ O ₂	0		

TM-Mo ₂ Ti ₂ C ₃ O ₂	$\Delta G_{*_{\rm H2O}}(eV)$	$\Delta G_{*H-OH}(eV)$	$\Delta G_{*_{\rm H}}(eV)$	$\Delta G_{*OH}(eV)$	i_0 (Acm ⁻²)
Fe _A -Mo ₂ Ti ₂ C ₂ O ₂	0.3676	1.0737	-0.2111	-1.5668	-3.5697
$Fe_B-Mo_2Ti_2C_2O_2$	0.5264	0.4592	1.7797	0.0239	-30.0906
Fe _s -Mo ₂ Ti ₂ C ₂ O ₂	0.8802	0.3348	0.1161	1.2328	-1.9635
Co_A - $Mo_2Ti_2C_2O_2$	0.2451	0.8530	-0.8313	-1.1797	-14.0561
Co_B - $Mo_2Ti_2C_2O_2$	-0.7968	1.7020	1.0859	0.0831	-18.3612
Cos-Mo ₂ Ti ₂ C ₂ O ₂	-0.5491	0.6067	-0.0792	0.6505	-1.3397
Ni_A - $Mo_2Ti_2C_2O_2$	0.2855	1.1009	-0.4513	-1.5411	-7.6310
Ni_B - $Mo_2Ti_2C_2O_2$	-0.5653	1.0312	0.1652	0.4244	-2.7934
Ni_{s} - $Mo_{2}Ti_{2}C_{2}O_{2}$	-0.7383	1.1234	0.0226	0.0629	-0.3816
Ru_A - $Mo_2Ti_2C_2O_2$	0.3831	1.8965	-0.1457	-2.0335	-2.4635
Ru_B - $Mo_2Ti_2C_2O_2$	-0.8891	0.0125	0.1817	1.3783	-3.0717
Ru_{s} - $Mo_{2}Ti_{2}C_{2}O_{2}$	-0.7781	0.2919	-0.0414	1.1997	-0.7008
Rh_A - $Mo_2Ti_2C_2O_2$	0.3876	0.5782	-0.8811	-1.0948	-14.8969
Rh_B - $Mo_2Ti_2C_2O_2$	-0.7140	0.3325	0.2363	0.9188	-3.9948
Rh_{s} - $Mo_{2}Ti_{2}C_{2}O_{2}$	-0.4915	0.9021	-0.3595	0.5226	-6.0783
Pd_A - $Mo_2Ti_2C_2O_2$	0.2837	1.1331	-0.4799	-1.5222	-8.1137
Pd_B - $Mo_2Ti_2C_2O_2$	-0.4037	1.0637	-0.0526	0.1204	-0.8891
$Pd_{S}\text{-}Mo_{2}Ti_{2}C_{2}O_{2}$	-0.3527	1.6609	0.0134	-0.7866	-0.2272
Os_A - $Mo_2Ti_2C_2O_2$	0.3897	2.5556	-0.0964	-2.3256	-1.6295
Os_B - $Mo_2Ti_2C_2O_2$	-1.6317	-0.8483	-1.0337	2.2875	-17.4784
Os_{S} - $Mo_{2}Ti_{2}C_{2}O_{2}$	-0.9359	0.0786	0.0254	1.4819	-0.4289
$Ir_{A}\text{-}Mo_{2}Ti_{2}C_{2}O_{2}$	0.3909	1.0657	-0.0394	-1.6411	-0.6655
Ir_B - $Mo_2Ti_2C_2O_2$	-0.7937	-0.6342	-0.1074	1.5538	-1.8165
Ir_s -Mo ₂ Ti ₂ C ₂ O ₂	-0.4723	0.3737	-0.3970	0.8041	-6.7125
Pt_A - $Mo_2Ti_2C_2O_2$	0.2860	1.1875	-0.4691	-1.5434	-7.9308
Pt_B - $Mo_2Ti_2C_2O_2$	-1.1703	0.0332	-0.3101	0.9464	-5.2426
$Pt_{S}\text{-}Mo_{2}Ti_{2}C_{2}O_{2}$	-0.4051	0.9475	-0.0356	-0.2535	-0.6022

Table S3 Ru-Mo $_2$ Ti $_2$ C $_3$ O $_2$ alkaline HER performance descriptor.

			· 1		
			E ⁰ (TM-	E ⁰ (OH-TM-	E ⁰ (H-TM-
	z	$E^{\circ}(M^{2}/MO_{2})$	Mo ₂ Ti ₂ C ₃ O ₂ /H-TM-	Mo ₂ Ti ₂ C ₃ O ₂ /TM-	Mo ₂ Ti ₂ C ₃ O ₂ /TM-
		$1_2C_3O_2)/V$	Mo ₂ Ti ₂ C ₃ O ₂)/V	Mo ₂ Ti ₂ C ₃ O ₂)/V	Mo ₂ Ti ₂ C ₃ O ₂)/V
Fe _A	3	2.836			
Fe _B	3	1.047	-1.640	0.282	0.413
Fes	3	0.870	0.154	-0.985	0.210
Co _A	2	4.602			
Co _B	2	2.126	-0.464	0.223	1.014
Cos	2	2.357	-1.153	-0.403	0.981
Ni _A	2	3.740			
Ni _B	2	1.382	0.900	-0.118	0.731
Nis	2	2.097	-1.321	0.184	1.259
Ru_{A}	3	3.714			
Ru_B	3	0.914	-0.028	-1.072	-0.278
Ru _s	3	1.515	-0.897	-0.952	0.643
Rh_A	3	2.827			
Rh_B	3	0.783	-0.332	-0.613	0.471
Rh_S	3	1.517	-0.818	-0.276	0.629
Pd_A	2	2.956			
Pd_B	2	0.781	-0.198	0.185	1.133

Table S4 Calculated standard potentials for reactions given by Equation (1) to (4), standard conditions, 298.15 K, pH = 0.

Pds	2	1.973	-1.646	1.033	1.824
			E ⁰ (TM-	E ⁰ (OH-TM-	E ⁰ (H-TM-
	z	$E^{0}(M^{z+}/Mo_{2})$	Mo ₂ Ti ₂ C ₃ O ₂ /H-TM-	Mo ₂ Ti ₂ C ₃ O ₂ /TM-	Mo ₂ Ti ₂ C ₃ O ₂ /TM-
		11203020	Mo ₂ Ti ₂ C ₃ O ₂)/V	Mo ₂ Ti ₂ C ₃ O ₂)/V	Mo ₂ Ti ₂ C ₃ O ₂)/V
Os _A	4	3.174			
Os _B	4	0.458	0.389	-1.981	-1.005
Oss	4	1.208	-0.384	-1.234	0.257
Ir _A	3	3.342			
Ir _B	3	0.663	0.772	-1.247	-0.150
Irs	3	1.731	-0.370	-0.557	0.687
Pt _A	2	3.811			
Pt _B	2	0.782	0.523	-0.640	0.480
Pt _S	2	2.692	-1.032	0.500	1.417

We consider the following electrochemical reaction processes on the surface of MXenes-supported metal SACs:

$$TM^{z+}+ze^{-}+Mo_2Ti_2C_3O_2 \rightarrow TM-Mo_2Ti_2C_3O_2$$
(1)

$$TM-Mo_2Ti_2C_3O_2+H^++e^{-} \rightarrow H-TM-Mo_2Ti_2C_3O_2$$
(2)

$$OH-TM-Mo_2Ti_2C_3O_2+H^++e^- \rightarrow TM-Mo_2Ti_2C_3O_2+H_2O \qquad (3)$$

$$O-TM-Mo_2Ti_2C_3O_2+2H^++2e^{-} TM-Mo_2Ti_2C_3O_2+H_2O$$
(4)

Since the TM single atom in TM_A - $Mo_2Ti_2C_3O_2$ is not modified on the surface of $Mo_2Ti_2C_3O_2$, we only calculated the pourbaix diagram of the TM^{z+} confinement process (Equation (1)) in this case.

The pourbaix diagrams of $TM_A-Mo_2Ti_2C_3O_2$, $TM_B-Mo_2Ti_2C_3O_2$, and $TM_S-Mo_2Ti_2C_3O_2$ at 298.15K are shown in Fig. S1, S2, and S3, respectively. It can be seen from Fig. S1 that the potential of metal dissolution in $TM_A-Mo_2Ti_2C_3O_2$ is at least 2.8 eV (see Table S4), which proves that TM single atom has high stability after anchoring to Mo defects and will not be easily dissolved from the catalyst.

In TM_B-Mo₂Ti₂C₃O₂ and TM_S-Mo₂Ti₂C₃O₂ (see Fig. S2 and S3), transition metal single atom is difficult to dissolve from the catalyst in all cases, which proves that the single atom site in the studied single atom catalyst has high stability under operating conditions. At E = 0 eV, Ni_B-Mo₂Ti₂C₃O₂ exhibits hydrogenophilic properties in all pH ranges, indicating the surface of the catalyst is easily covered by H. While the surface of Os_B, Ir_B, Pt_B, Fe_S, Ru_B, Rh_B, Os_B, Co_S, Ru_S, Os_S, Ir_S-Mo₂Ti₂C₃O₂ will be covered by H or OH, depending on the pH value. The TM single atom in the remaining TM-Mo₂Ti₂C₃O₂ (such as Fe_B, Co_B, Pd_B, Ni_S, Pd_S, and Pt_S-Mo₂Ti₂C₃O₂) can be stably exposed under certain pH and voltage conditions.

For Ru_S -Mo₂Ti₂C₃O₂, which we finally screened out as an excellent hydrogen evolution catalyst, the adsorption of OH on the Ru site is stable at pH = 14, and the adsorption of H on the Ru site is the most stable at -1.78 V. There is a strong interaction between OH and Ru, which is consistent with the conclusion in Fig. 5a. This phenomenon indicates that the OH desorption process in the alkaline hydrogen evolution reaction is the potential determining step.

Fig. S1 Surface Pourbaix plots for TM_A - $Mo_2Ti_2C_3O_2$. Thick black lines indicate the theoretical water stability region.

Fig. S2 Surface Pourbaix plots for $TM_B-Mo_2Ti_2C_3O_2$. Thick black lines indicate the theoretical water stability region.

Fig. S3 Surface Pourbaix plots for TM_8 - $Mo_2Ti_2C_3O_2$. Thick black lines indicate the theoretical water stability region.

Fig. S4 The relative stability of *O and *OH was terminated on Ru_A -Mo₂Ti₂C₃ at $U_{SHE} = 0$ V.

Fig. S5 Reaction energy diagram of water dissociation on Ru_S -Mo₂Ti₂C₂O₂ and Ru_B -Mo₂Ti₂C₂O₂.

Fig. S6 Bader charge analysis of H_2O adsorption in Ru-Mo₂Ti₂C₂O₂

Through the comparison between Fig. 4d-f and Fig. S1a-c, it can be found that the Ru atom on Ru_A -Mo₂Ti₂C₂O₂ obtains electrons after adsorbing H₂O molecules, indicating that this Ru atom is an electron acceptor. Similarly, the single Ru atom in Ru_S -Mo₂Ti₂C₂O₂ and Ru_B -Mo₂Ti₂C₂O₂ are electron donors, which is the reason for the effective activation of H₂O.