Supported information for:

Excited State Deactivation via Solvent to Chromophore Proton Transfer in Isolated 1:1 Molecular Complex: Experimental Validation by Measuring the Energy Barrier and Kinetic Isotope Effect

Saurabh Khodia,^{‡,a} Ramesh Jarupula,^{‡,a} Simran Baweja,^a Md. Shabeeb,^a Bhavika Kalal^a and Surajit Maity^{*,a}

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India, PIN-502284

SI Figure S1: Comparison of (a) the Franck-Condon simulated intensity of $PBI-H_2O$ complex with (b) the experimental R2PI spectrum. The spectral assignments are given in main text Table 2. The inverted (red trace) shows the Franck–Condon vibronic spectrum with suggested band assignment, simulated using *FC-LabWin* software based on the DFT-D4(B3LYP)/def2-TZVPP ground S₀ and excited state S₁ calculations of the most stable PBI–H₂O complex (normal form).

SI Figure S2. The baseline corrected normalized R2PI spectra of PBI-H₂O and PBI-D₂O are shown to compare the kinetic isotope effect on various vibrational modes. The I_D/I_H values are given in main text Table 2 of the article, calculated by integrating each peak.

SI Figure S3. Comparison of the Franck-Condon simulated intensity (b) of PBI-NH₃ complex with the experimental spectrum (a). The spectral assignments are given in SI Table S1. The frequencies were scaled using a factor of 0.85. The scaling factor is obtained by taking the ratio of experimental and calculated v₄₅ modes. The inverted (red trace) shows the Franck–Condon vibronic spectrum with suggested band assignment, simulated using *FC-LabWin* software based on the DFT-D4(B3LYP)/def2-TZVPP ground S₀ and excited state S₁ calculations of the most stable PBI–NH₃ complex (normal form).

SI Figure S4. DFT-D4 (B3-LYP/def2-TZVPP) computed potential energy surfaces on the electronic ground state (S₀) and the energy of corresponding $\pi\pi^*$ and $n\pi^*$ state in PBI–H₂O complex along the proton transfer reaction coordinate. The HOMO of the starting (a) and final structures (b) are shown to highlight the contribution of π and n-states, respectively. The intersection of the $\pi\pi^*$ and $n\pi^*$ states are clearly visible along the pathway.

SI Figure S5. The relative NBO charge of OH/NH₂ moiety in the respective complex in S₁ state was calculated as $\Delta q = q_i - q_r$, qi is the total NBO charge on OH/NH₂ in the structures along the path, q_r is the NBO charge on OH/NH₂ in the first structure of the complex in the S₁ state. The Δq is plotted along the ESPT/ESHT pathway as a function of N_P···H bond length. The initial and final structures are positioned at the longest and shortest N_P···H bond lengths, respectively.

SI Table S1: The experimental band positions (v_{expt}) and vibrational frequencies in the excited (v'_{Expt}) states of the PBI-NH₃ complex are listed along with the possible assignments. The calculated frequencies at DFT-D4 (B3-LYP/def2-TZVPP) level of theory are scaled using a factor of 0.85. The scaling factor is obtained by taking the ratio of experimental and calculated v_{45} modes

v _{expt} (cm⁻¹)	v' _{expt} (cm⁻¹)	Assignment	v' _{calc} (cm ⁻¹)
30872	0	000	0
30960	88	45^{1}_{0}	88
30987	115	Ty_0^1	124
31033	160	Tx_0^1	153
31049	177	45_0^2	177
31074	202	$45^{1}_{0}Ty^{1}_{0}$	212
31120	248	$45_0^1 T x_0^1$	241
31140	267	45^{3}_{0}	265
31152	280	$Ty_0^1 Tx_0^1$	277
31161	289	$45_0^2 T y_0^1$	300
31187	314	Tx_0^2	306
31208	336	$45_0^2 T x_0^1$	330
31228	356	45^{4}_{0}	353
31258	386	$45_0^1 T x_0^2$	394
31294	422	$45^3_0 T x^1_0$	418
31348	476	$45_0^2 T x_0^2$	482
31373	501	40^{1}_{0}	503
31419	547	39 ¹ ₀	539
31431	558	$45_0^1 T x_0^3$	547
31474	602	$45_0^1 40_0^1$	592
31555	683	$45_0^2 40_0^1$	680
31590	718	45 ² ₀ 39 ¹ ₀	715
31606	734	37 <mark>1</mark>	724
31646	774	$45_0^3 40_0^1$	768

SI Table S2: Coordinates of the optimized structures of PBI monomer, $PBI-H_2O$ and $PBI-NH_3$ complex in the ground state S_0 and excited state S_1 , calculated using B3LYP-D4/def2-TZVPP level of theory.

		Ground State	S ₀		Excited State S ₁						
	Atom	Х	Y	Z		Atom	Х	Y	Z		
1	С	-2.4372	1.3494	0	1	С	-2.4595	1.3664	0		
2	Н	5.1449	1.0002	0	2	Н	5.1897	0.9625	0		
3	N	-2.3468	-1.0533	0	3	N	-2.319	-1.0845	0		
4	Н	5.0267	-1.4533	0	4	Н	5.0159	-1.4909	0		
5	Н	-5.5373	-0.0026	0	5	Н	-5.528	-0.0703	0		
6	С	-3.8205	1.3083	0	6	С	-3.8364	1.3068	0		
7	С	1.7457	-0.7672	0	7	С	1.7305	-0.754	0		
8	Н	2.8487	-2.6322	0	8	Н	2.7912	-2.6215	0		
9	N	0.4043	-1.0687	0	9	N	0.3713	-1.0261	0		
10	С	3.0297	1.2998	0	10	С	3.0678	1.2962	0		
11	С	4.1082	-0.8821	0	11	С	4.1212	-0.8852	0		
12	N	0.5151	1.1647	0	12	N	0.5697	1.219	0		
13	С	-1.739	0.141	0	13	С	-1.7258	0.1676	0		
14	С	-4.4591	0.0732	0	14	С	-4.4528	0.035	0		
15	С	2.8943	-1.5516	0	15	С	2.8461	-1.5416	0		
16	С	-0.28	0.1192	0	16	С	-0.3004	0.1526	0		
17	Н	-0.0484	-1.967	0	17	Н	-0.1273	-1.9047	0		
18	Н	-4.1395	-2.0554	0	18	Н	-4.1025	-2.0853	0		
19	С	1.7951	0.6484	0	19	С	1.7974	0.6708	0		
20	Н	-4.3948	2.225	0	20	Н	-4.4281	2.2114	0		
21	Н	-1.8851	2.2774	0	21	Н	-1.9284	2.3082	0		
22	С	4.1749	0.5218	0	22	С	4.2155	0.4947	0		
23	Н	3.077	2.3798	0	23	Н	3.1325	2.3751	0		
24	С	-3.6767	-1.0751	0	24	С	-3.6406	-1.1022	0		

PBI-monomer (normal form)

PBI-NH₃ (initial structure normal form)

		Ground S	tate S ₀		Excited State S ₁					
	Atom	Х	Y	Z		Atom	Х	Y	Z	
1	С	-2.8257	-1.5156	-0.0575	1	C	-2.788	-1.5421	-0.0497	
2	С	-1.6814	-0.7221	-0.0305	2	С	-1.66	-0.6983	-0.0263	
3	С	-1.7446	0.6913	0.0249	3	С	-1.7691	0.7184	0.0228	
4	С	-2.9851	1.3336	0.0551	4	С	-3.0064	1.292	0.0486	
5	С	-4.1229	0.5468	0.0287	5	С	-4.1664	0.4343	0.025	
6	С	-4.0441	-0.8571	-0.0269	6	С	-4.054	-0.9421	-0.0227	
7	N	-0.4708	1.2109	0.0401	7	N	-0.4993	1.2861	0.0359	
8	С	0.3331	0.1658	-0.0039	8	С	0.3447	0.2862	-0.0024	
9	N	-0.3427	-1.0252	-0.0476	9	N	-0.345	-0.9627	-0.0417	
10	С	1.7919	0.2676	-0.0069	10	С	1.7889	0.3339	-0.0076	
11	С	2.3902	1.5314	0.038	11	C	2.462	1.5521	0.0319	
12	С	3.7696	1.6163	0.0339	12	С	3.8433	1.5811	0.0266	

13	С	4.5186	0.445	-0.0148	13	с	4.5245	0.3293	-0.0203
14	С	3.8394	-0.7635	-0.057	14	С	3.7808	-0.832	-0.0575
15	N	2.5108	-0.8635	-0.0536	15	N	2.4419	-0.8945	-0.0536
16	Н	-2.7678	-2.5944	-0.1003	16	н	-2.6744	-2.6162	-0.0872
17	Н	-3.0418	2.4125	0.0977	17	Н	-3.1247	2.3656	0.0859
18	Н	-5.0973	1.016	0.0511	18	н	-5.1446	0.8931	0.0456
19	Н	-4.9585	-1.4347	-0.0463	19	Н	-4.9405	-1.558	-0.0393
20	н	0.0655	-1.9656	-0.0839	20	н	0.0878	-1.909	-0.0762
21	Н	1.7571	2.4048	0.0745	21	н	1.8828	2.4645	0.0665
22	Н	4.2576	2.5812	0.0679	22	н	4.3831	2.5154	0.0569
23	н	5.5992	0.4646	-0.02	23	н	5.6038	0.2762	-0.0271
24	Н	4.3886	-1.6979	-0.0956	24	н	4.2937	-1.7892	-0.0933
25	N	1.0538	-3.5988	-0.1406	25	N	1.0134	-3.4506	-0.1334
26	Н	1.1221	-4.1718	-0.9723	26	н	1.118	-4.0125	-0.9688
27	Н	1.1292	-4.2085	0.6639	27	Н	1.1264	-4.0602	0.6668
28	н	1.836	-2.9466	-0.1284	28	н	1.7577	-2.7382	-0.1157

PBI-NH₃ (Trasition state)

	Tra	nsition Stat	e along ESI	νт	Transition State along ESHT					
	Atom	Х	Y	Z		Atom	Х	Y	Z	
1	С	-3.0377	-1.2415	-0.0103	1	С	-3.0332	-1.2408	1.70E-03	
2	С	-1.8673	-0.4564	-0.0028	2	С	-1.85	-0.4734	0.001	
3	С	-1.9039	0.9638	0.0043	3	С	-1.8854	0.952	-0.001	
4	С	-3.1071	1.6037	0.003	4	С	-3.0769	1.609	-0.0028	
5	С	-4.3088	0.807	-0.0049	5	С	-4.2787	0.8261	-0.0027	
6	С	-4.2685	-0.5746	-0.0114	6	C	-4.2514	-0.5608	-0.0003	
7	N	-0.6007	1.4617	0.0107	7	N	-0.5702	1.4298	-0.0018	
8	С	0.1796	0.4171	0.0067	8	С	0.1841	0.3723	0	
9	N	-0.5694	-0.7915	-0.0014	9	N	-0.5631	-0.8402	0.0017	
10	С	1.6385	0.3886	0.0054	10	С	1.6696	0.3758	0.0004	
11	С	2.3697	1.5583	0.008	11	С	2.344	1.5624	0.0088	
12	С	3.7621	1.5177	0.0013	12	С	3.7603	1.5842	0.008	
13	С	4.3678	0.2282	-0.0096	13	С	4.3992	0.323	-0.0031	
14	С	3.5724	-0.8909	-0.0104	14	С	3.6553	-0.8286	-0.011	
15	Ν	2.2213	-0.8767	-0.0024	15	Ν	2.2867	-0.8653	-0.0089	
16	Н	-2.9803	-2.3205	-0.0156	16	Н	-2.996	-2.3211	3.50E-03	
17	Н	-3.1693	2.6827	0.0069	17	Н	-3.1262	2.6886	-0.0047	
18	Н	-5.262	1.3159	-0.0055	18	Н	-5.2297	1.3397	-0.0046	
19	Н	-5.1865	-1.1429	-0.0173	19	Н	-5.1778	-1.1159	-0.0001	
20	Н	-0.1695	-1.7528	3.00E-04	20	Н	-0.0654	-2.032	0.0047	
21	Н	1.8393	2.5004	0.0143	21	Н	1.7754	2.4807	0.0156	
22	Н	4.351	2.4211	0.0035	22	н	4.3127	2.5092	0.0148	
23	Н	5.443	0.1161	-0.0171	23	Н	5.479	0.2475	-0.0054	
24	Н	4.0239	-1.878	-0.0175	24	Н	4.1491	-1.7938	-0.0192	
25	N	0.8727	-3.0908	0.0143	25	N	0.7217	-3.0389	0.008	

26	н	1.0354	-3.6802	-0.7927	26	н	0.7159	-3.6251	-0.8168
27	Н	1.0265	-3.6554	0.8407	27	Н	0.7193	-3.6163	0.839
28	Н	1.5534	-2.2215	0.0066	28	Н	1.5481	-2.3421	0.0024

PBI-NH₃ (ESPT and ESHT product)

	ESPT Product					ESHT Product					
	Atom	Х	Y	Z		Atom	Х	Y	Z		
1	С	-3.0466	-1.2233	5.00E-04	1	С	-3.1907	0.534	-6.38E-02		
2	С	-1.8689	-0.4788	-0.0051	2	С	-1.7967	0.6093	-0.0286		
3	С	-1.8719	0.942	-0.0092	3	С	-1.1365	1.8594	0.045		
4	С	-3.0849	1.6342	-0.0061	4	С	-1.8385	3.0264	0.0827		
5	С	-4.256	0.8928	0.0014	5	С	-3.2698	2.9482	0.0458		
6	С	-4.2372	-0.513	0.0046	6	С	-3.9219	1.7376	-0.0251		
7	N	-0.5823	1.4093	-0.0159	7	N	0.2514	1.6123	0.0661		
8	С	0.1792	0.3245	-0.0135	8	С	0.336	0.3137	0.0063		
9	N	-0.5493	-0.8403	-0.0074	9	N	-0.8617	-0.3769	-0.0533		
10	C	1.618	0.3642	-0.0115	10	С	1.6561	-0.4089	0.001		
11	С	2.3213	1.5668	0.0135	11	С	2.8487	0.2185	0.0371		
12	С	3.7017	1.5756	0.0165	12	С	4.0731	-0.5478	0.0313		
13	С	4.4025	0.3481	-0.0016	13	С	3.965	-1.9286	-0.0132		
14	С	3.6872	-0.8157	-0.0191	14	С	2.7339	-2.5437	-0.0504		
15	N	2.3331	-0.8109	-0.0242	15	N	1.5831	-1.7753	-0.0431		
16	Н	-3.0325	-2.304	-2.00E-04	16	Н	-3.6948	-0.4213	-1.20E-01		
17	Н	-3.1053	2.715	-0.0101	17	Н	-1.3424	3.9856	0.1388		
18	Н	-5.2064	1.4092	0.0039	18	Н	-3.841	3.8655	0.0749		
19	Н	-5.1735	-1.0546	0.0091	19	Н	-5.0017	1.7072	-0.0514		
20	Н	-0.1574	-1.8048	0.0019	20	Н	-1.3278	-2.5353	-0.1327		
21	Н	1.7418	2.4773	0.0307	21	Н	2.8613	1.2956	0.0714		
22	Н	4.2396	2.512	0.0325	22	Н	5.0318	-0.0569	0.0612		
23	Н	5.4809	0.3109	-0.0054	23	Н	4.8489	-2.5523	-0.0195		
24	Н	4.159	-1.7859	-0.0283	24	Н	2.5896	-3.6099	-0.0856		
25	N	0.7928	-3.3716	0.0146	25	N	-0.8818	-3.4492	-0.1428		
26	Н	0.8112	-3.9948	-0.7877	26	Н	-1.1699	-3.9394	-0.9803		
27	Н	0.8239	-3.9715	0.8338	27	Н	-1.2124	-3.9779	0.6546		
28	Н	1.8611	-1.7325	-0.0104	28	Н	0.6882	-2.2643	-0.0726		

PBI-H₂O (initial structure normal form)

		Ground	State S ₀		Excited State S ₁					
	Atom	Х	Y	Z		Atom	Х	Y	Z	
1	C	2.9805	1.3342	-8.10E-02	1	C	2.999	1.2986	-0.0575	
2	н	-5.5761	0.248	0.0603	2	Н	-5.5843	0.0888	0.0951	
3	н	5.0378	-1.3688	0.0851	3	н	5.024	-1.4864	0.0908	
4	C	-3.7929	-0.9424	0.0913	4	C	-3.7481	-0.9949	0.1254	
5	С	-1.7617	0.1341	0.0176	5	С	-1.762	0.1979	0.0021	
6	C	4.1414	0.5836	-0.0374	6	C	4.1869	0.4776	-0.0121	

7	N	-2.4612	-1.0098	0.0765	7	N	-2.4088	-1.0315	0.0953
8	С	-4.4957	0.2508	0.045	8	С	-4.5066	0.1537	0.0638
9	С	2.9092	-1.5159	0.1001	9	С	2.8705	-1.5383	0.0827
10	Н	3.0035	2.4129	-0.1488	10	Н	3.0843	2.3746	-0.1113
11	Н	5.1009	1.0817	-0.0717	11	Н	5.1496	0.9683	-0.0312
12	Н	-4.3168	-1.8896	0.1448	12	Н	-4.2386	-1.9598	0.2064
13	Н	-1.7771	2.2692	-0.0796	13	Н	-1.8995	2.3241	-0.1354
14	С	-2.3903	1.3825	-0.033	14	С	-2.462	1.4038	-0.0649
15	С	1.7416	-0.7582	0.0552	15	С	1.7174	-0.7313	0.0369
16	Ν	0.4121	-1.1004	8.14E-02	16	N	0.4116	-1.038	0.047
17	С	4.106	-0.8205	0.052	17	С	4.1192	-0.8986	0.0559
18	Н	0.0238	-2.042	0.1298	18	Н	-0.009	-1.9877	0.0654
19	Н	-4.2795	2.3907	-0.0577	19	Н	-4.3939	2.3344	-0.0897
20	Н	2.8855	-2.5945	0.1721	20	Н	2.7917	-2.6147	0.1406
21	С	-0.3011	0.0689	0.0102	21	С	-0.3198	0.1854	-0.0086
22	С	-3.771	1.4367	-0.0198	22	С	-3.8401	1.4089	-0.0383
23	С	1.7605	0.6544	-0.0339	23	С	1.7796	0.6867	-0.0308
24	N	0.4718	1.1347	-0.0589	24	N	0.4939	1.2129	-0.0571
25	0	-1.1659	-3.4881	0.1831	25	0	-1.0664	-3.318	0.1707
26	Н	-1.7712	-2.7139	0.1275	26	Н	-1.7085	-2.5296	0.156
27	Н	-1.292	-3.9873	-0.6276	27	Н	-1.258	-3.8359	-0.6147

PBI-H₂O (Trasition state)

	Tra	ansition Sta	te along ESI	РТ	Transition State along ESHT				
	Atom	Х	Y	Z		Atom	Х	Y	Z
1	С	3.1395	1.537	-4.10E-03	1	С	2.996	1.3057	-0.0404
2	Н	-5.46	0.2696	0.0755	2	Н	-5.5977	0.1332	0.1115
3	Н	5.1561	-1.2525	0.0452	3	Н	5.0269	-1.4699	0.0754
4	С	-3.6398	-0.8039	0.0492	4	С	-3.8004	-0.9791	0.1665
5	С	-1.643	0.4304	-0.02	5	С	-1.783	0.1907	0.0055
6	С	4.3237	0.7142	0.0146	6	С	4.1804	0.4917	-0.0058
7	N	-2.2734	-0.804	0.0117	7	N	-2.4293	-1.0274	0.1302
8	С	-4.3817	0.3457	0.0437	8	С	-4.5175	0.1847	0.0736
9	С	3.0049	-1.305	0.0252	9	С	2.8782	-1.5377	0.0688
10	Н	3.2244	2.6144	-0.0114	10	Н	3.0735	2.3828	-0.0803
11	Н	5.2878	1.2019	0.0187	11	Н	5.1433	0.9821	-0.0202
12	Н	-4.102	-1.7804	0.0858	12	Н	-4.3	-1.9323	0.2777
13	Н	-1.7743	2.53	-0.0468	13	Н	-1.8566	2.2843	-0.1811
14	С	-2.3321	1.6055	-0.0268	14	С	-2.4385	1.3793	-0.0915
15	С	1.8548	-0.4943	0.0037	15	C	1.7183	-0.7391	0.0318
16	N	0.548	-0.8035	3.00E-04	16	N	0.419	-1.0676	0.0385
17	С	4.2517	-0.6633	0.0294	17	С	4.1167	-0.8895	0.0476
18	Н	0.1013	-1.7405	-0.0402	18	Н	-0.1416	-2.2068	0.0647
19	Н	-4.3058	2.5283	-0.0067	19	Н	-4.3954	2.354	-0.1412

20	н	2.9233	-2.3824	0.0401	20	н	2.8099	-2.6154	0.1161
21	С	-0.1625	0.4092	-0.0196	21	С	-0.294	0.1531	-0.0016
22	С	-3.7458	1.6082	-0.0015	22	С	-3.8583	1.4234	-0.0667
23	С	1.9244	0.9197	-0.0104	23	С	1.7878	0.68	-0.0193
24	N	0.6263	1.4425	-0.0243	24	N	0.4841	1.1922	-0.0357
25	0	-0.8898	-2.866	-0.0251	25	0	-0.9691	-3.1259	0.1579
26	Н	-1.6724	-1.8734	-0.0254	26	Н	-1.7387	-2.326	0.1642
27	Н	-1.0261	-3.404	-0.8073	27	Н	-1.0603	-3.618	-0.6637

PBI-H₂O (ESPT and ESHT product)

		ESPT P	roduct		ESHT Product				
	Atom	Х	Y	Z		Atom	Х	Y	Z
1	С	3.162	1.6192	1.10E-01	1	С	3.0225	1.341	-0.2557
2	н	-5.4312	0.456	-0.041	2	н	-5.6041	0.2192	0.0571
3	н	5.2556	-1.0517	-0.1171	3	н	5.0179	-1.4018	0.2554
4	С	-3.6872	-0.724	-0.094	4	С	-3.8213	-0.9146	-0.0214
5	С	-1.5511	0.3979	-0.047	5	С	-1.7588	0.3011	0.034
6	С	4.3355	0.8827	0.0539	6	С	4.2	0.5332	-0.1073
7	N	-2.3163	-0.7723	-0.1082	7	N	-2.4373	-0.8886	-0.0315
8	С	-4.3527	0.456	-0.0489	8	С	-4.5235	0.2668	0.0539
9	С	3.1225	-1.2175	-0.1585	9	С	2.8598	-1.4441	0.2683
10	н	3.1702	2.6947	0.2192	10	н	3.1058	2.4001	-0.4578
11	н	5.2885	1.3906	0.1165	11	Н	5.168	1.0052	-0.1997
12	н	-4.1926	-1.6727	-0.135	12	Н	-4.2782	-1.8878	-0.0727
13	н	-1.6221	2.5025	0.0568	13	н	-1.8541	2.3831	0.1681
14	C	-2.2301	1.6125	0.0061	14	C	-2.4241	1.4697	0.1193
15	С	1.9526	-0.4751	-0.107	15	С	1.7161	-0.6558	0.1299
16	N	0.6165	-0.824	-1.69E-01	16	N	0.4002	-0.9901	0.2103
17	C	4.319	-0.5127	-0.0771	17	C	4.1169	-0.8158	0.1462
18	н	0.2648	-1.7997	-0.2285	18	Н	-0.2921	-2.7035	0.1813
19	Н	-4.1139	2.6237	0.0359	19	Н	-4.4092	2.4155	0.181
20	Н	3.1147	-2.2952	-0.2504	20	Н	2.7845	-2.5035	0.4715
21	С	-0.1243	0.3437	-0.0502	21	С	-0.2571	0.2058	-0.0033
22	С	-3.6073	1.6715	0.0008	22	С	-3.868	1.4855	0.1262
23	С	1.9488	0.9326	0.0266	23	С	1.8102	0.7295	-0.1331
24	N	0.6606	1.4061	0.0603	24	N	0.502	1.2435	-0.2231
25	0	-1.6466	-3.5446	0.4695	25	0	-0.961	-3.4152	0.0815
26	Н	-1.8928	-1.7134	-0.0031	26	Н	-1.9407	-1.7737	-0.0623
27	Н	-1.5452	-4.2797	-0.1474	27	Н	-0.7422	-3.8735	-0.7334