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Supporting Information

Table S1 Summary of protein sequence alignment of TLR4 and MD2 between mouse and human. 
Comparison and alignment of mouse and human sequences were conducted via pairwise 
sequence alignment in EMBL-EBI1.

Length Identity Similarity Gap

TLR4 1-827 559/827(67.6%) 660/827(79.8%) 4/827(0.5%)

MD2 1-160 103/160(64.4%) 129/160(80.6%) 0/160(0.0%)
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Fig. S1 (a) A patch and B patch2 of mouse TLR4 extracted from mouse (TLR4/MD2/2*Neoseptin 
3)2 heterotetramer (PDB ID: 5IJC3); (b) Structural comparison of mouse TLR4/MD2 (green, PDB ID: 
5IJD3) and human TLR4/MD2 (blue, PDB ID: 3FXI4); (c) Position of lipid A in human 
(TLR4/MD2/Lipid A)2 (PDB ID: 3FXI4); (d) Position of Neoseptin 3 in mouse 
(TLR4/MD2/2*Neoseptin 3)2 (PDB ID: 5IJC3). Electrostatic potentials of TLR4 were calculated via 
APBS program5 and displayed with PyMol software6. Protein was shown as cartoon and ligands 
were shown as ball-stick models.
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Fig. S2 RMSDs of the protein backbone during the repeated simulation of (TLR4/MD2)2 from 
mouse (a, b) or human (c, d) complexed with lipid A (a, c) or Neoseptin 3 (b, d).
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Fig. S3 Main residues’ contributions to the binding of Neoseptin 3 with mouse TLR4/MD2 (a) and 
human TLR4/MD2 (b) after the energy decomposition of binding free energies. Unit: kcal/mol.
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Fig. S4 RMSF of Cα atoms of mouse TLR4 (a), TLR4* (b), MD2 (c), and MD2* (d) when bound with 
lipid A or Neoseptin 3. All replicates of each system were merged together, and the RMSFs were 
calculated with the merged trajectories for the last 50 ns.
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Fig. S5 RMSF of Cα atoms of human TLR4 (a), TLR4* (b), MD2 (c), and MD2* (d) when bound with 
lipid A or Neoseptin 3. All replicates of each system were merged together, and the RMSFs were 
calculated with the merged trajectories for the last 50 ns.
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Fig. S6 Proportion of variance captured by principal components for mouse (TLR4/MD2/Lipid A)2 

(a), mouse (TLR4/MD2/2*Neoseptin 3)2 (b), human (TLR4/MD2/Lipid A)2 (c) and human 
(TLR4/MD2/2*Neoseptin 3)2 (d).
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Fig. S7 The square fluctuations of the second mode of TLR4 (a) or TLR4* (b) bound with 

Neoseptin 3.
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Fig. S8 Representative conformations and positions of key residues involved in the hydrophobic 
interactions and hydrogen bonds between TLR4 and neighboring MD2 of mouse 
(TLR4/MD2/Lipid A)2 (a), mouse (TLR4/MD2/2*Neoseptin 3)2 (b), human (TLR4/MD2/Lipid A)2 (c), 
and human (TLR4/MD2/2*Neoseptin 3)2 (d). Protein was shown as cartoon and ligands were not 
shown for clarity. Residues of neighboring MD2 were shown as sticks and labeled with asterisks. 
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Fig. S9 Number of hydrogen bonds per frame between TLR4 and neighboring MD2 (including 
TLR4-MD2* and TLR4*-MD2) for mouse (a) or human (b) (TLR4/MD2)2 interacting with lipid A 
and Neoseptin 3. All trajectories of replicates for each system were calculated. The data are 
shown as the mean ± SEM over the last 50 ns of simulations.
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