Supporting Information

Reconfigurable band alignment of SeWS/h-BP van der Waals heterostructures for photoelectric applications

Dong Wei¹, Yi Li², Gaofu Guo¹, Heng Yu¹, Yaqiang Ma¹, Yanan Tang², and Xianqi Dai^{1,*}

¹ School of Physics, Henan Normal University, Xinxiang, Henan 453007, China.

² School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, China.

With various stacking orders, the SeWS and h-BP single layer can form different heterobilayer structures, which are labeled by A, B, C, D, E, and F. The D, E and F configurations are obtained by rotating h-BP layer 180° around the vertical axis of the A, B and C type structures, respectively. The a-f configuration is similar to the A-F configuration, the only difference is the contact surface between the SWSe layer and the h-BP layer.

^{*} Address correspondence to E-mail: xqdai@htu.cn (Xianqi Dai).

Fig. S1. The (a), (b), (c) and (d) are schematic diagrams of the structures of SeWS/h-BP and SWSe/h-BP vdWHs before and after the AIMD simulation, respectively.

Fig. S2. The A, B, C and D are the h-BP, SeWS monolayers, SeWS/h-BP and SWSe/h-BP vdWHs, respectively. The perfect circlarity means the vdWHs have perfectly isotropic elastic properties.

Fig. S3. The average electrostatic potential for the (a) h-BP and (b) SWSe monolayer, (c) SeWS/h-BP and (d) SWSe/h-BP vdWHs, respectively.

Fig. S4. The (a) and (b) are the orthogonal lattice of SeWS/h-BP and SWSe/h-BP vdWHs, respectively. (c) In the first Brillouin zone, the orthogonal supercell has been presented by the pink line with points Γ , X, Y, and S.

To study the mobility properties of electrons and holes, the carrier mobility μ_{2D} of the 2D semiconducto can be obtained as follows:

$$\mu_{2D} = \frac{e\hbar^3 C_{2D}}{K_B T m^* m_d E_1^2}$$

(2)

where *e* is the electron charge, \hbar is the reduced Planck constant, K_B is the Boltzmann constant and *T* is the temperature(300 K in our calculations). The *m** and $m_d = \sqrt{m_x^* m_y^*}$ are the effective mass and average effective mass of carriers along the transport direction, respectively. The in-plane stiffness $C_{2D} = 2[\partial^2 E/\partial (\Delta l/l_0)^2]/S_0$, where the *E* is total energy and S_0 is the area of the vdWHs. The $E_1 = \Delta V/(\Delta l/l_0)$ is the deformation potential constant, the $\Delta V = \Delta E_{VBM}$ or ΔE_{CBM} (strain range from -2% to 2%, calculated using 0.5% steps), Δl and l_0 are the deformation of the lattice constants along the transport direction and the intrinsic lattice constants, correspondingly.

Here, the effective masses and mobilities of carriers along the x and y directions were calculated, in which the orthorhombic lattices were used instead of the hexagonal cells for intrinsic h-BP, SeWS layers and SeWS/h-BP (SWSe/h-BP) vdWHs.

Fig. S5. The (a), (b), (c) and (d) are the change of total energy for h-BP, WSSe, SeWS/h-BP vdWHs and SWSe/h-BP vdWHs at -2%-2% uniaxial strain, respectively.

Fig. S6. The (a), (b), (c) and (d) are the variation of VBM and CBM energy positions at -2%-2% uniaxial strain for h-BP, WSSe, SeWS/h-BP vdWHs and SWSe/h-BP vdWHs , respectively.

Fig. S7. The integrated charge density difference in (a) S and Se vdWHs with various E_{field} along *z* direction.

Fig. S8. The optical absorption coefficient of the h-BP layer, SeWS layer, SWSe/h-BP and SeWS/h-BP vdWHs.

To explore the optical properties, the frequency-dependent dielectric function $[\varepsilon(\omega)]$ was calculated and obtained the optical absorption coefficient $\alpha(\omega)$ according to the following equation:

$$\alpha = \sqrt{2}\omega \sqrt{\left(\sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)} - \varepsilon_1(\omega)\right)} \tag{1}$$

where $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ are the real and imaginary parts of the complex dielectric function, respectively.

Table S1. The elastic constants of C_{11} , C_{12} and C_{66} (N m⁻¹), the Young's modulus Y (N m⁻¹) and Poisson ratio v.

	C ₁₁	C ₁₂	C ₆₆	Y	ν
h-BP	149.564	38.999	55.283	139.395	0.26
SeWS	138.511	25.980	56.265	133.683	0.19
SeWS/h-BP	334.023	78.118	127.952	315.753	0.23
SWSe/h-BP	284.206	77.725	103.24	262.950	0.27

The power conversion efficiency equation:

$$\eta = \frac{J_{SC}V_{OC}\beta_{FF}}{P_{solar}} = \frac{0.65(E_g - \Delta E_c - 0.3)\int_{E_g}^{\infty} P(\hbar\omega)EQE(\hbar\omega)}{\int_{0}^{\infty} P(\hbar\omega)d(\hbar\omega)}$$
(2)

where 0.65 is the band-fill factor ($\beta_{\rm FF}$), E_g is the bandgap of the donor, ΔE_c is the conduction band offset (CBO) at the Anderson Limit. The term ($E_g - \Delta E_c - 0.3$) evaluates the maximum open circuit voltage $V_{\rm oc}$, where 0.3 eV is an empirical factor that has been discussed. The $P(\hbar\omega)$ denotes the AM 1.5 solar energy flux (W m⁻² eV⁻¹) with $\hbar\omega$ of phono energy. The integral in the numerator represents the short-circuit current *Jsc*, assuming 100% external quantum efficiency (EQE), the P_{solar} is the total incident solar power per area at AM 1.5. The E_g is regarded as the lower limit of

$$\int_{E_g}^{\infty} P(\hbar\omega) EQE(\hbar\omega)$$
 integration of the term

, where the electrons can be excited into a

higher level after absorbing photon energy over E_g .