Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

M ₂ CF ₂	F sites	E _{tot} (eV/atom)	$\Delta E_{\rm tot}$ (eV/atom)	a (Å)	L(Å)	$d_{\mathrm{M-C}}(\mathrm{\AA})$	$d_{\mathrm{M-F}}(\mathrm{\AA})$
Sc_2CF_2	HCP	-7.434		6.389	5.227	2.268	2.253
Sc_2CF_2	FCC	-7.679	-0.245	6.531	4.832	2.274	2.206
Sc_2CF_2	TOP	-7.106		6.965	6.049	2.340	1.827
$Y_2 CF_2$	HCP	-7.574		6.907	5.526	2.447	2.405
$Y_2 CF_2$	FCC	-7.778	-0.203	7.079	5.104	2.461	2.360
$Y_2 CF_2$	TOP	-7.130		7.509	6.554	2.533	1.966
Ti ₂ CF ₂	HCP	-7.966		5.945	5.072	2.100	2.170
Ti ₂ CF ₂	FCC	-8.083	-0.117	6.101	4.782	2.098	2.160
Ti ₂ CF ₂	TOP	-7.744		6.392	5.738	2.146	1.77
Zr_2CF_2	HCP	-8.414		6.459	5.409	2.277	2.330
Zr_2CF_2	FCC	-8.481	-0.067	6.597	5.139	2.273	2.322
Zr_2CF_2	TOP	-8.085		6.788	6.364	2.334	1.914
Hf_2CF_2	HCP	-10.260		6.316	5.411	2.236	2.305
Hf_2CF_2	FCC	-10.321	-0.062	6.534	5.055	2.233	2.310
Hf_2CF_2	TOP	-10.010		6.798	6.285	2.324	1.897
$V_2 CF_2$	HCP	-7.945		5.574	5.143	2.038	2.082
$V_2 CF_2$	FCC	-8.015	-0.069	5.962	4.601	2.001	2.145
$V_2 CF_2$	TOP	-7.833		6.338	5.312	2.043	1.748
Nb_2CF_2	HCP	-8.565		6.004	5.523	2.195	2.237
Nb_2CF_2	FCC	-8.602	-0.037	6.412	4.936	2.153	2.302
Nb_2CF_2	TOP	-8.364		6.342	6.223	2.208	1.876
Ta ₂ CF ₂	HCP	-9.271		5.916	5.633	2.190	2.238
Ta ₂ CF ₂	FCC	-9.255	0.016	6.398	4.947	2.140	2.313
Ta ₂ CF ₂	TOP	-9.157		6.200	6.320	2.201	1.878
Cr ₂ CF ₂	HCP	-7.621		5.490	5.041	1.962	2.091
Cr_2CF_2	FCC	-7.711	-0.089	6.000	4.310	1.953	2.136
Cr_2CF_2	TOP	-7.642		5.837	5.465	1.963	1.726
Mo_2CF_2	HCP	-8.176		5.915	5.446	2.271	2.271
Mo ₂ CF ₂	FCC	-8.242	-0.066	6.535	4.515	2.109	2.299
Mo_2CF_2	TOP	-8.206		6.169	6.024	2.117	1.867

Table S1. Calculated total energies (E_{tot}), energy differences (ΔE_{tot}) of HCP and FCC models, lattice parameters (a), slab thicknesses (L), M-C bond lengths (d_{M-C}), M-F bond lengths (d_{M-F}) of different M₂CF₂ configurations.

	$E_{\rm tot}$	$E_{\rm M}$	E_{C}	$E_{ m F}$	$E_{ m fl}$	E_{f2}
Sc_2CF_2	-7.68	-6.63	-9.38	-1.84	-2.42	-2.45
Y_2CF_2	-7.78	-7.03	-9.38	-1.84	-2.36	-2.46
Ti ₂ CF ₂	-8.08	-12.30	-9.38	-1.84	-0.56	-2.24
Zr_2CF_2	-8.48	-8.60	-9.38	-1.84	-2.44	-2.27
Hf_2CF_2	-10.32	-14.19	-9.38	-1.84	-2.04	-2.26
V_2CF_2	-8.01	-9.37	-9.38	-1.84	-1.66	-1.90
Nb_2CF_2	-8.60	-10.86	-9.38	-1.84	-1.65	-1.94
Ta ₂ CF ₂	-9.25	-13.20	-9.38	-1.84	-1.37	-1.84
Cr_2CF_2	-7.71	-10.02	-9.38	-1.84	-1.10	-1.61
Mo ₂ CF ₂	-8.24	-11.58	-9.38	-1.84	-1.01	-1.61

Table S2. Formation energies (E_{f1} and E_{f2} , eV/atom) of M₂CF₂ configurations relative to the combination of M, C and F elemental materials and the combination of bare M₂C MXene and F.

ZXY	M=Sc	Y	Ti	Zr	Hf	V	Nb	Та
HHH	0.124	0.105	0.285	0.245	0.328	0.469	0.458	0.577
FHH	0.093	0.063	0.263	0.212	0.297	0.453	0.433	0.553
THH	0.093	0.062	0.263	0.212	0.297	0.453	0.433	0.553
HHF	0.038	0.032	0.035	0.013	0.016	0.026	0.041	0.042
FHF	0.066	0.069	0.117	0.114	0.134	0.131	0.124	0.142
THF	0.005	0.044	0.013	0.005	0.006	0.010	0.017	0.021
HHT	0.034	0.032	0.025	0.013	0.036	0.017	0.030	0.030
FHT	0	0.017	0	0	0	0	0.003	0.006
THT	0.063	0.064	0.108	0.101	0.110	0.115	0.102	0.113
HFH	0.067	0.072	0.118	0.115	0.132	0.128	0.119	0.137
FFH	0.040	0.039	0.036	0.022	0.065	0.028	0.039	0.038
TFH	0.008	0.047	0.014	0.013	0.032	0.013	0.015	0.016
HFF	0.012	0.000	0.211	0.187	0.273	0.398	0.412	
FFF	0.047	0.048	0.238	0.224	0.313	0.421		
TFF	0.012	0	0.211	0.187	0.274	0.398	0.412	
HFT	0.009	0.021	0.003	0.009	0.004	0.003	0	0
FFT	0.077	0.039	0.027	0.015	0.052	0.019	0.027	0.024
TFT	0.053	0.066	0.179	0.102	0.139	0.114	0.099	0.110
HTH	0.079	0.083	0.140	0.154	0.173	0.157	0.157	0.190
FTH	0.079	0.069	0.040		0.090	0.048	0.062	0.094
TTH	0.060		0.063	0.148	0.120	0.063	0.086	0.115
HTF	0.028	0.068	0.041		0.090	0.049	0.062	0.093
FTF	0.079	0.083	0.139	0.154	0.173	0.158	0.159	0.192
TTF	0.061		0.063	0.148		0.064	0.086	0.115
HTT	0.149	0.164	0.284	0.262	0.306	0.394	0.384	0.447
FTT	0.149	0.164	0.284	0.262	0.306	0.394	0.384	0.447
TTT	0.183	0.180	0.308	0.293	0.336	0.412	0.408	0.469

Table S3. Calculated total energy differences (eV/atom) of ZXY- $M_2CF_2Li_4$ configurations to the most stable configuration.

X=Li site, Y=F site, Z=Li site; H=HCP site, F=FCC site, T=TOP site.

"--" means that structural relaxation does not converge.

Fig. S1. Phonon dispersions of the most stable M_2CF_2 configurations.

Notes: Only a little imaginary frequencies exist for the Nb_2CF_2 , which attribute to the inadequate supercell for phonon calculation.

Fig. S2. Potential energy profiles of different M₂CF₂ configurations during the AIMD simulations.

Fig. S3. Band structures of different MXenes before and after lithiation. Xmax indicates the maximum Li content.

Fig. S4. Density of states of different MXenes before and after lithiation. Xmax indicates the maximum Li content.