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Fig. S1 Calculated SOC band structures of monolayer NdN2 with different Ueff.

Table S1 Calculated lattice constant a, local magnetic moment of Nd atom MNd, sum of local magnetic moment of 

two N atoms MN2, and total magnetic moment per unit cell Mtot of monolayer NdN2 using different pseudopotential 

for Nd atom.

a (Å) MNd (μB) MN2 (μB) Mtot (μB)

NdN2 (5s25p65d16s2) 3.93 0.06 2.94 3.00

NdN2 (5s26s25p65d14f 3) 3.92 0.13 2.87 3.00
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Fig. S2 Spin- and orbital-resolved band structures without SOC of monolayer NdN2 obtained from GGA+U scheme with 

specific parameters of U = 7.2 eV and J = 1.0 eV implemented for the Nd-4f orbitals.

Table S2 Slater-Koster TB parameters for hexagonal lattice with lattice constant a = 3.65Å and interlayer distance d = 

1.77Å. The unprimed and primed parameters correspond to nearest and next-nearest neighbor hoppings, respectively.
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-2.8 -2.39 -2.41 -0.15 -1.94 -1.90 -0.55 -0.6 -0.2

Fig. S3 Variation of energy as a function of lattice constant for monolayers 1T-NdN2 (a), 2H-NdN2 (b), and tetragonal-

NdN2 (c).
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Part I: The MAE of monolayer NdN2

Here, a detailed analysis is conducted on the magnetic anisotropy energy (MAE) of monolayer NdN2. The angular 

dependence of MAE can be expressed as follows:  

2 4 4

1 2 3( , ) cos cos cosMAE K K K      

where K1 and K2 are anisotropy constants, while θ and φ are polar and azimuth angles in the spherical coordinates, 

respectively. By fitting the MAE results shown in Fig. S3(a), we can obtain the anisotropy constants, i.e., K1 = 143 μeV, 

K2 = 35 μeV, and K3 = 0 μeV. The positive value of K1 indicates that monolayer NdN2 exbibits an out-of-plane magnetic 

anisotropy with its easy magnetization axis along the c axis. While K3 = 0 implies isotropic magnetization in the xy plane. 

Figure S3(b) displays a spherical plot of the MAE arising from magnetization rotation, in which the out-of-plane 

magnetization is more energetically favorable than the in-plane magnetization by 171 μeV/u.c..

Fig. S4 (a) Polar angular dependence of MAE for monolayer NdN2. (b) Magnetic anisotropy of NdN2 through the whole 

space. (c) Variations of moment and Cv as a function of temperature. 

Part II: The Curie temperature of monolayer NdN2

Here, the Curie temperature (TC) of monolayer NdN2 is evaluated in detail. We first calculate exchange coupling 

parameters between nearest, next-nearest, and next-next-nearest neighbors (J1, J2, and J3) using different magnetic 

configurations in relation to the Ising model: 
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where M is the net magnetic moment at the N site i, while (i, j), (k,l), and (m, n) run over the nearest, next-nearest and next-

next-nearest N atoms. The obtained J1 and J2 are 8.4 meV and 1.4 meV, respectively. However, the value of J3 is only 0.13 

meV, which is negligible and can be disregarded. The TC is estimated through Monte-Carlo (MC) simulation on a 200 × 

200 supercell for 1×109 loops, based on the Ising Hamiltonian. Figure S3(c) presents the evolution of magnetic moment 

per unit cell with increasing temperature. It should be noted that the magnetic moment decreases to 0.0 μB when the 

temperature exceeds 396 K. Furthermore, we also calculate the heat capacity (Cv) expressed as:
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where ΔET is the variation of total energy as the temperature increases from T to T + ΔT. According to the simulated Cv 

curve shown in Fig. S3(c), it can be inferred that the 2D NdN2 exhibits a TC of 396.5 K, indicating its potential application 
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in spintronic devices operating at room temperature. 

Fig. S5 Calculated AHC σxy as a function of Fermi level for the cases of θ = 90°, θ = 180°, and θ = 270°, respectively. The 

corresponding Chern numbers are C = -1, C = -3, and C = 1.

Fig. S6 (a) Relative energy of 2D allotropes of NdN2. (b) Energy curve along the structural phase transition paths of 1T-

2H and 1T-tetragonal predicted by the c-NEB method.

Fig. S7 Variation of total energy during 10ps AIMD simulation of monolayer 1T-NdN2. Inserts show the initial and final 

structures of monolayer 1T-NdN2 after 10ps at 300 K.
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Table S3 The lattice constant a, bond length of Nd-N d, N-N distance along the z axis h, and total magnetic moment per 

unit cell Mtot of monolayer NdN2 with 1T, 2H, and tetragonal phases.

a (Å) d (Å) h (Å) Mtot (μB)

1T-NdN2 3.93 2.43 1.78 3.00

2H-NdN2 3.99 2.41 1.70 0.15

Tetragonal-NdN2 3.46 2.53 1.37 0.00

Fig. S8 Band structures of 1T-NdN2 (a-b) and tetragonal-NdN2 (c-d) monolayers without and with SOC. The red and blue 

lines represent the spin-up and spin-down states, respectively.


