Supporting Information for

Interface prompted highly efficient hydrogen evolution of MoS₂/CoS₂ heterostructures in wide pH range

Tian Wang,¹ Pu Chang,² Zhipeng Sun,¹ Xiaohu Wang,³ Junguang Tao^{2,*} and Lixiu Guan^{1,*} ¹School of Science, Hebei University of Technology, Tianjin 300401, China ²School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China

³Ulanqab Key Laboratory of graphite (graphene) new materials, Rising Graphite Applied Technology Research Institute, Ulanqab, Inner Mongolia, 013650, China

Material Synthesis:

Synthesis of MoS_2/CoS_2 heterostructure on carbon cloth (CC): CC was immersed in acetone, ethanol and deionized (DI) water for ultrasonically cleaning of 30 min in each step. At first, 0.55 g Co(NO₃)₂·6H₂O and 1.30 g 2-methylimidazole (C₄H₆N₂) were uniformly dissolved in 40 mL water, respectively. Subsequently, a piece of treated CC (2×3 cm²) was immersed in a mixed purple solution consisting of the above two solutions at room temperature for 5 h. The purple CC at the end of the reaction was repeatedly rinsed with ethanol and dried overnight to obtain cobalt-based metalorganic framework on CC (Co-MOF/CC).

Secondly, the prepared Co-MOF/CC was immersed into a 50 mL (ethanol: DI water = 3:2) solution containing 0.91 g sodium molybdate (Na_2MoO_4) and etched at 100 °C for 3 h. After etching, the samples were washed by ethanol and dried overnight to obtain CoMoO₄/CC.

At last, the MoS₂/CoS₂ heterostructure was prepared by simple one-

step calcination at 400 °C for 5 h under Ar atmosphere, where 1 g thiourea powder and CoMoO₄/CC precursors were placed in the upstream and downstream of the tube furnace, respectively. The mass loading of MoS_2/CoS_2 on CC was calculated to be ~2.05 mg cm⁻².

Synthesis of CoS_2 on CC: The conditions remained the same except for the replacement of 0.91 g sodium molybdate with 0.69 g of $Co(NO_3)_2 \cdot 6H_2O$ in the preparation of $CoMoO_4$ step. The mass loading of CoS_2 on CC was calculated to be ~1.97 mg cm⁻².

Synthesis of MoS_2 on CC: The MoS₂ was prepared on CC using a simple hydrothermal method. A piece of treated CC (2×3 cm²) substrate was immersed in 40 mL aqueous solution composed of 0.25 g Na₂MoO₄ and 0.5 g TAA. Subsequently, the solution was transferred into a 50 mL Teflonlined stainless autoclave and heated to 200 °C for 20 h. The prepared sample was washed with ethanol and dried at 60 °C to obtain the MoS₂ on CC. The mass loading of MoS₂ on CC was calculated to be ~2.08 mg cm⁻². *Preparation of Pt/C on CC*: The commercial Pt/C (20 wt %, Aladdin) and IrO₂ (99%, Aladdin) was drop-casted on CC using catalyst ink. The catalyst ink was obtained by dispersing Pt/C uniformly in a solution containing 0.5 mL ethanol and 50 µL Nafion. The mass loading of Pt/C was calculated to be ~2.0 mg cm⁻².

Electrochemical measurements: The electrochemical performance was tested with a three-electrode configuration using LK2010A

electrochemical workstation (Tianjin, China). Nitrogen saturated solutions of 0.5 M H₂SO₄ and 1.0 M KOH were used as acidic and alkaline electrolytes, respectively. The saturated calomel electrode (SCE) and Ag/AgCl were used as the reference electrode in 1 M KOH and 0.5 M H₂SO₄, respectively. The obtained catalysts on carbon cloth (CC) and a graphite rod were directly used as the working electrode and the counter electrode, respectively. The linear sweep voltammetry (LSV) curves were performed at a scan rate of 5 mV s⁻¹ with *iR* compensation. The electrochemical impedance spectroscopy (EIS) measurements were carried out to obtain the R_{cl} in the frequency range of 100 kHz ~ 0.01 Hz with AC amplitude of 5 mV at the overpotential of 100 mV.

Electrochemical active surface area (ECSA) calculation: The double layer capacitance (C_{dl}) was evaluated according to the following equation: $C_{dl} = \Delta j/2v$, where Δj is the current density difference between anode and cathode at the potential corresponding to 0.520 V and v is the scan rate (Fig. S8). Subsequently, the ECSA was estimated from the C_{dl} according to ECSA = C_{dl}/C s, which Cs is the specific capacitance.

Site	Gibbs free energy ΔG_{H^*} (eV)	
	Acidic	Alkaline
2H-MoS ₂ -Mo	2.38	3.97
2H-MoS ₂ -S	2.01	4.43
CoS ₂ -S	-4.10	-6.64
CoS ₂ -Co	0.36	0.61
HS-Co	-0.08	-0.25
HS-Mo	0.39	0.48
$HS-S(MoS_2)$	0.71	1.67
$HS-S(CoS_2)$	0.30	0.52

Table S1. ${}^{\Delta} {}^{G}_{H^*}$ values for various site on 2H-MoS₂, CoS₂ and 2H-

 MoS_2/CoS_2 .

Table S2. ${}^{\Delta} {}^{G}_{H^*}$ values for various site on 2H-MoS₂, CoS₂ and 1T-

Site	Gibbs free energy ΔG_{H^*} (eV)	
	Acidic	Alkaline
1T-MoS ₂ -Mo	-1.01	2.33
1T-MoS ₂ -S	-0.86	0.31
CoS ₂ -S	-4.10	-6.64
CoS ₂ -Co	0.36	0.61
HS-Co	-0.20	0.01
HS-Mo	-0.85	-1.42
$HS-S(MoS_2)$	-0.80	-1.50
$HS-S(CoS_2)$	-0.07	-0.39

MoS₂/CoS₂.

Fig. S1. The OH^- adsorption configurations on Co sites of 2H-MoS₂/CoS₂ (a) and 1T-MoS₂/CoS₂ (b). The cyan, yellow blue white and red balls represent Mo, S, Co H and O atoms, respectively.

Fig. S2. The H adsorption configurations on different Co sites of $1T-MoS_2/CoS_2$ from different view angles (a) and (b). The cyan, yellow and blue balls represent Mo, S and Co atoms, respectively.

Fig. S3. DOS spectra of OH adsorption on Co sites for 2H-MoS₂/CoS₂ (af) and 1T-MoS₂/CoS₂ (g-l). (b-f) and (h-l) are the corresponding DOS spectra for Co, S(COS₂), Mo, S(MoS₂) and H atoms, respectively. The purple, blue and green curves are *s*, *p* and *d* orbitals of the corresponding atoms. The E_F is indicated by a red dashed line.

Fig. S4. DOS spectra of internal Co atom. The purple, blue and green curves are s, p and d orbitals of the Co atom. The E_F is indicated by the red dashed line.

Fig. S5. Differential charge density plots. (a)-(b) are for Co and S(MoS₂) site adsorption on 2H-HS. (c)-(d) are the Co and S(MoS₂) adsorption configurations on 1T-HS. The blue and red region denote the electron accumulation and depletion, respectively. The isosurface value is 0.005 e $Å^{-3}$. The blue arrows highlight the electron aggregation phenomenon in the corresponding configurations.

Fig. S6. (a) XRD pattern and Raman spectra (b) of 1T-2H MoS₂/CoS₂.

Fig. S7. SEM (a-c), TEM (d) and HRTEM (e) images of MoS_2/CoS_2 .

Fig. S8. (a-c) CV curves in double layer region (0.47-0.57 V vs. RHE), (d) electrochemical double-layer capacitances, (e) electrochemical active surface area and (f) specific activities normalized by ECSA for MoS₂/CoS₂, CoS₂ and MoS₂ at different scan rates ($20 \sim 100 \text{ mV S}^{-1}$), respectively.

Fig. S9. Nyquist plots of MoS₂/CoS₂, CoS₂, and MoS₂.

Fig. S10. Polarization curves of MoS_2/CoS_2 before and after 1000 CV cycles. Inset shows the chronoamperometry tests of MoS_2/CoS_2 at 20 mA cm⁻² for 20 h.