Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

## Supplementary Information for

# Mechanistic insight into Dehalococcoides-mediated reductive dechlorination of polychlorinated biphenyls

Shangwei Zhang,\*ab Wei Ouyang,ab Xinghui Xia,b Wu Wen, \*c Lorenz Adrian,de and Gerrit Schüürmannfg

<sup>a</sup>Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China

<sup>b</sup>State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China

<sup>c</sup>Instrumentation and Service Centre for Science and Technology, Beijing Normal University, Zhuhai, 519087, China

<sup>d</sup>UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany

<sup>e</sup>Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany

<sup>f</sup>UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany

<sup>g</sup>Technical University Bergakademie Freiberg, Institute of Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, Germany

\*Correspondence should be addressed to S. Z. (E-mail: <u>zhangshangwei@bnu.edu.cn</u>, <u>shangwei.zhang@ufz.de</u>) and W. W. (<u>wenwuliwen@bnu.edu.cn</u>)

### **Table of Contents**

| Table S1 Key molecular orbitals of 2345-236-CB                                                            | 3 |
|-----------------------------------------------------------------------------------------------------------|---|
| Table S2         The contributions of natural bond orbital to molecular orbital                           | 4 |
| Table S3         The oxidation states of cobalt and other elements for species along reaction coordinates | 5 |
| Fig. S1 Reductive dechlorination kinetics of PCB132and PCB174 with Dehalococcoides mccartyi strain CG1    | 9 |



#### Table S1 Key molecular orbitals (MO) of 2345-236-CB<sup>a</sup>

<sup>a</sup> Key molecular orbitals calculated at spin-unrestricted BP86/Def2TZVPP//BP86/Def2SVP covers two frontier MOs (HOMO and LUMO) and five energylowest unoccupied MOs (LUMO+1 … LUMO+5). The structure of 2345-236-PCB is represented by balls and sticks. The blue and green isosurfaces of MOs are depicted at isovalues of 0.03 and -0.03, respectively.

|              | МО     | NBO contribution to MO   |                          |                  |  |  |
|--------------|--------|--------------------------|--------------------------|------------------|--|--|
| compound     |        | contribution coefficient | NBO                      | contribution (%) |  |  |
| cob(I)alamin | НОМО   | 0.961                    | [ 76]: LP ( 1)Co 1(lp)   | 92.4             |  |  |
| 234-236-PCB  | LUMO+4 | 0.466                    | [104]: BD*( 1) C 8-Cl 9* | 21.7             |  |  |
|              |        | 0.453                    | [102]: BD*( 1) C 6-Cl 7* | 20.5             |  |  |
|              |        | 0.409                    | [ 90]: BD*( 1)Cl 1- C 2* | 16.7             |  |  |
|              |        | -0.31                    | [118]: BD*( 1) C17-Cl18* | 9.61             |  |  |
|              |        | -0.246                   | [115]: BD*( 1) C15-Cl16* | 6.05             |  |  |
|              |        | -0.231                   | [108]: BD*( 1) C11-Cl12* | 5.34             |  |  |
| 2345-236-PCB | LUMO+4 | 0.489                    | [124]: BD*( 1) C16-Cl17* | 23.9             |  |  |
|              |        | 0.470                    | [121]: BD*( 1) C14-Cl15* | 22.1             |  |  |
|              |        | 0.390                    | [126]: BD*( 1) C18-Cl19* | 15.2             |  |  |
|              |        | 0.381                    | [119]: BD*( 1) C12-Cl13* | 14.5             |  |  |

Table S2 The contributions of natural bond orbital (NBO) to molecular orbital (MO)<sup>a</sup>

<sup>a</sup> The molecular orbital decomposition to natural bond orbital were done by NBO 6.0 implanted in Gaussian Rev 09 D.01 at theoretical level of spinunrestricted BP86/Def2TZVPP//BP86/Def2SVP. 

 Table S3 The oxidation states of cobalt and other elements for species along reaction coordinates of configuration

 specific route, Cl<sub>3</sub>-234Ar-a<sub>2</sub> of 234-236-CB<sup>a</sup>

| atom number (atom) | RC      | TS | IM      | PC      |
|--------------------|---------|----|---------|---------|
| 1(Co)              | 1       | 3  | 3       | 2       |
| 2(N)               | -3      | -3 | -3      | -3      |
| 3(N )              | -3      | -3 | -3      | -3      |
| 4(N )              | -3      | -3 | -3      | -3      |
| 5(N)               | -3      | -3 | -3      | -3      |
| 6(C)               | 0       | 0  | 0       | 0       |
| 7(C)               | 0       | 0  | 0       | 0       |
| 8(C)               | 4       | 4  | 4       | 4       |
| 9(C)               | 4       | 4  | 4       | 4       |
| 10(C)              | 4       | 4  | 4       | 4       |
| 11(O )             | -2      | -2 | -2      | -2      |
| 12(C)              | 4       | 4  | 4       | 4       |
| 13(C)              | 4       | 4  | 4       | 4       |
| 14(C)              | 4       | 4  | 4       | 4       |
| 15(C)              | 4       | 4  | 4       | 4       |
| 16(C)              | 4       | 4  | 4       | 4       |
| 17(C)              | 4       | 4  | 4       | 4       |
| 18(C)              | 2       | 2  | 2       | 2       |
| 19(C)              | 4       | 4  | 4       | 4       |
| 20(C)              | 4       | 4  | 4       | 4       |
| 21(C)              | 4       | 4  | 4       | 4       |
| 22(C)              | 4       | 4  | 4       | 4       |
| 23(C)              | 4       | 4  | 4       | 4       |
| 24(C)              | 4       | 4  | 4       | 4       |
| 25(C)              | 4       | 4  | 4       | 4       |
| 26(C)              | 4       | 4  | 4       | 4       |
| 20(C)              | 4       | -  | 4       | -       |
| 28(C)              | -1      | -1 | 1       | т<br>3  |
| 20(C)              | - 1     | 0  | 0       | 1       |
| 29(C)              | 2       | 3  | 4       | 1       |
| 30(C)<br>31(C)     | 1       | 1  | 4       | 1       |
| 31(C)<br>32(O)     | 4       | 4  | 4       | 4       |
| 32(U)              | -2      | -2 | -2      | -2      |
| 33(IN)<br>34(C)    | -0<br>2 | -3 | -0<br>2 | -0<br>2 |
| 34(C)              | 3       | 4  | ა<br>ი  | 3<br>2  |
| 35(C)              | 4       | 4  | 3<br>4  | 3       |
| 30(C)              | 4       | 4  | 4       | 4       |
| 37(N)              | -3      | -3 | -3      | -3      |
| 38(O)              | -2      | -2 | -2      | -2      |
| 39(C)              | 1       | 2  | 0       | 1       |
| 40(C)              | 1       | 0  | 0       | 1       |
| 41(C)              | 4       | 4  | 2       | 3       |
| 42(C)              | 4       | 4  | 4       | 4       |
| 43(O)              | -2      | -2 | -2      | -2      |
| 44(N)              | -3      | -3 | -3      | -3      |
| 45(C)              | 4       | 4  | 4       | 3       |
| 46(C)              | 2       | 1  | 2       | 2       |
| 47(C)              | 4       | 4  | 4       | 4       |

| 48(O)            | -2     | -2 | -2     | -2     |
|------------------|--------|----|--------|--------|
| 49(N)            | -3     | -3 | -3     | -3     |
| 50(C)            | -2     | -2 | -2     | -2     |
| 51(C)            | 1      | 1  | 1      | 2      |
| 52(C)            | 4      | 2  | 3      | 3      |
| 53(C)            | 4      | 4  | 4      | 4      |
| 54(C)            | 4      | 4  | 4      | 4      |
| 55(O)            | -2     | -2 | -2     | _2     |
| 56(N)            | -3     | -3 | -3     | -3     |
| 57(C)            | 2      | 3  | 1      | 0      |
| 57(C)            | 2<br>1 | 0  | 1      | 2      |
| 50(C)            | - 1    | 4  | -1     | -2     |
| 59(C)            | 4      | 4  | 4      | 2      |
| 60(C)            | 4      | 4  | 3      | 4      |
| 61(C)            | 4      | 4  | 4      | 4      |
| 62(O)            | -2     | -2 | -2     | -2     |
| 63(N)            | -3     | -3 | -3     | -3     |
| 64(C)            | 4      | 3  | 4      | 3      |
| 65(C)            | 4      | 4  | 4      | 4      |
| 66(N)            | -3     | -3 | -3     | -3     |
| 67(O)            | -2     | -2 | -2     | -2     |
| 68(H)            | 1      | 1  | 1      | 1      |
| 69(H)            | 1      | 1  | 1      | 1      |
| 70(H)            | 1      | 1  | 1      | 1      |
| 71(H)            | 1      | 1  | 1      | 1      |
| 72(H)            | 1      | 1  | 1      | 1      |
| 73(H)            | 1      | 1  | 1      | 1      |
| 74(H)            | 1      | 1  | 1      | 1      |
| 75(H)            | 1      | 1  | 1      | 1      |
| 76(日)<br>76(日)   | 1      | 1  | 1      | 1      |
| 70(11)<br>77(LL) | 1      | 1  | 1      | 1      |
| 77(11)           | 1      | 1  | 1      | 1      |
| 70(□)<br>70(□)   | 1      | 1  | 1      | 1      |
| 79(H)            | 1      | 1  | 1      | 1      |
| 80(H)            | 1      | 1  | 1      | 1      |
| 81(H )           | 1      | 1  | 1      | 1      |
| 82(H)            | 1      | 1  | 1      | 1      |
| 83(H )           | 1      | 1  | 1      | 1      |
| 84(H)            | 1      | 1  | 1      | 1      |
| 85(H)            | 1      | 1  | 1      | 1      |
| 86(H)            | 1      | 1  | 1      | 1      |
| 87(H)            | 1      | 1  | 1      | 1      |
| 88(H)            | 1      | 1  | 1      | 1      |
| 89(H)            | 1      | 1  | 1      | 1      |
| 90(H)            | 1      | 1  | 1      | 1      |
| 91(H)            | 1      | 1  | 1      | 1      |
| 92(H)            | 1      | 1  | 1      | 1      |
| 93(H)            | 1      | 1  | 1      | 1      |
| 94(H)            | 1      | 1  | 1      | 1      |
| 05(H)            | 1      | 1  | 1      | 1      |
|                  | 1<br>1 | 1  | 1      | 1      |
| эо(н)<br>07(Ц)   | 1<br>4 | 1  | ו<br>א | ו<br>ג |
| 9/(H)            | 1      | 1  | 1      | 1      |
| 98(H)            | 1      | 1  | 1      | 1      |
| 99(H)            | 1      | 1  | 1      | 1      |
| 100(H)           | 1      | 1  | 1      | 1      |

| 101(H)             | 1      | 1      | 1      | 1      |
|--------------------|--------|--------|--------|--------|
| 102(LL)            | 1      | 1      | 1      | 1      |
| 102(IT)            | 1      | 1      | 1      | 1      |
|                    | 1      | 1      | 1      | 1      |
| 104(H)             | 1      | 1      | 1      | 1      |
| 105(H)             | 1      | 1      | 1      | 1      |
| 106(H)             | 1      | 1      | 1      | 1      |
| 107(H)             | 1      | 1      | 1      | 1      |
| 108(H)             | 1      | 1      | 1      | 1      |
| 109(H)             | 1      | 1      | 1      | 1      |
| 110(H)             | 1      | 1      | 1      | 1      |
| 111(H)             | 1      | 1      | 1      | 1      |
| 112(H)             | 1      | 1      | 1      | 1      |
| 113(H)             | 1      | 1      | 1      | 1      |
| 110(II)            | 1      | 1      | 1      | 1      |
| 114(II)<br>115(U)  | 1      | 1      | 1      | 1      |
|                    | 1      | 1      | 1      | 1      |
| 116(H)             | 1      | 1      | 1      | 1      |
| 117(H)             | 1      | 1      | 1      | 1      |
| 118(H )            | 1      | 1      | 1      | 1      |
| 119(H)             | 1      | 1      | 1      | 1      |
| 120(H)             | 1      | 1      | 1      | 1      |
| 121(H)             | 1      | 1      | 1      | 1      |
| 122(H)             | 1      | 1      | 1      | 1      |
| 123(H)             | 1      | 1      | 1      | 1      |
| 124(H)             | 1      | 1      | 1      | 1      |
| 125(H)             | 1      | 1      | 1      | 1      |
| 126(H)             | 1      | 1      | 1      | 1      |
| 127(H)             | 1      | 1      | 1      | 1      |
| 128(H)             | 1      | 1      | 1      | 1      |
| 120(H)             | 1      | 1      | 1      | 1      |
| 129(II)<br>130(LI) | 1      | 1      | 1      | 1      |
| 130(11)            | 1      | 1      | 1      | 1      |
| 131(H)             | 1      | 1      | 1      | 1      |
| 132(H)             | 1      | 1      | 1      | 1      |
| 133(H)             | 1      | 1      | 1      | 1      |
| 134(H )            | 1      | 1      | 1      | 1      |
| 135(H )            | 1      | 1      | 1      | 1      |
| 136(H)             | 1      | 1      | 1      | 1      |
| 137(H)             | 1      | 1      | 1      | 1      |
| 138(C)             | 2      | 2      | 2      | 2      |
| 139(C)             | 2      | 2      | 2      | 2      |
| 140(C)             | 2      | 2      | 2      | 2      |
| 141(C)             | 2      | 2      | 2      | 2      |
| 142(C)             | 2      | 2      | 2      | 2      |
| 143(C)             | 4      | 4      | 4      | 4      |
| 143(0)             | т<br>2 | т<br>2 | т<br>2 | т<br>2 |
| 144(0)             | -2     | -2     | -2     | -2     |
| 145(H)             | 1      | 1      | 1      | 1      |
| 146(H)             | 1      | 1      | 1      | 1      |
| 147(H)             | 1      | 1      | 1      | 1      |
| 148(H)             | 1      | 1      | 1      | 1      |
| 149(H)             | 1      | 1      | 1      | 1      |
| 150(H )            | 1      | 1      | 1      | 1      |
| 151(CI)            | -1     | -1     | -1     | -1     |
| 152(C)             | 4      | 2      | 2      | 2      |
| 153(C)             | 4      | 4      | 4      | 4      |

| 154(C)  | 4  | 4  | 4  | 4  |
|---------|----|----|----|----|
| 155(C)  | 4  | 4  | 4  | 4  |
| 156(C)  | 2  | 2  | 2  | 2  |
| 157(C)  | 2  | 2  | 2  | 2  |
| 158(C)  | 4  | 4  | 4  | 4  |
| 159(H)  | 1  | 1  | 1  | 1  |
| 160(C)  | 4  | 4  | 4  | 4  |
| 161(C)  | 4  | 4  | 4  | 4  |
| 162(C)  | 4  | 4  | 4  | 4  |
| 163(C)  | 2  | 2  | 2  | 2  |
| 164(C)  | 2  | 2  | 2  | 2  |
| 165(CI) | -1 | -1 | -1 | -1 |
| 166(CI) | -1 | -1 | -1 | -1 |
| 167(CI) | -1 | -1 | -1 | -1 |
| 168(CI) | -1 | -1 | -1 | -1 |
| 169(H)  | 1  | 1  | 1  | 1  |
| 170(H)  | 1  | 1  | 1  | 1  |
| 171(H)  | 1  | 1  | 1  | 1  |
| 172(CI) | -1 | -1 | -1 | -1 |

<sup>a</sup> The oxidation states of all species are calculated at spin-unrestricted BP86/Def2TZVPP//BP86/Def2SVP according to localized orbital bonding method.

The oxidation states of Co in RC, TS, IM, an PC at other configuration-specific reaction routes are the same as their counterparts here and thus are not given.



**Fig. S1** Reductive dechlorination kinetics of PCB132 (234-236-CB) and PCB174 (2345-236-CB) with *Dehalococcoides mccartyi* strain CG1. The data was obtained from reference [1].

#### References

[1] L. Yu, Q. Lu, L. Qiu, G. Xu, Y. Zeng, X. Luo, S. Wang and B. Mai, Applied Environmental Microbiology, 2018, 84, e01300-01318.