Supporting Information (SI)

DFT Study on the Methanol Decomposition over Pt/CeO₂(110) catalysts: effect of size and position of Pt

Hao Lu,^{a,⊥} Yuan Zhong,^{a,⊥} Yao Jie,^a Pan Yin,^a Xiao-Jie Zhao,^a Yu-Liang Feng,^a

Tian-Yao Shen,^a Jing-Yi Guo,^a Wei Zhang,^a Min Pu,^a Hong Yan,^{*a}

^a State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding Authors:

yanhong@mail.buct.edu.cn (Hong Yan).

 $^{\perp}$ Hao Lu and Yuan Zhong contributed equally to this work.

Contents

Title	Page
1. The top view of the optimized structures of $CeO_2(100)$, $CeO_2(110)$ and $CeO_2(111)$ surfaces. (Figure S1)	S3
2. Binding energy of the Pt atom on CeO ₂ (110) surface when <i>k</i> -point are $3 \times 3 \times 1$ and $5 \times 5 \times 1$. (Table S1)	S4
3. Take the energy E_0 of CH ₃ OH adsorbed on CeO ₂ (110) surface as an example for ENCUT test. (Figure S2)	S4
4. Adsorption energy of methanol molecules on $Pt/CeO_2(110)(2\times1)$ and $Pt/CeO_2(110)(2\times2)$. (Table S2)	S5
5. Screening of the Pt single-atom for loading sites on $CeO_2(110)$ of $Pt_1/CeO_2(110)$. (Figure S3)	S5
6. Comparison of binding energies (<i>BE</i>) of Pt_4 , Pt_6 , Pt_7 and Pt_{10} clusters loaded on $CeO_2(110)$. (Figure S4)	S6
7. Screening of methanol molecular adsorption sites on $Pt_1/CeO_2(110)$, $Pt_7/CeO_2(110)$, and $Pt_1/Ce_{1-x}O_2(110)$. (Figure S5)	S7
8. The change of bond lengths before and after methanol adsorption, as well as the adsorption energy and adsorption mode on the surface of different catalysts. (Table S3)	S8
9. Reaction rate constant (k_+/k) of the elementary reaction step on Pt ₁ /CeO ₂ (110), Pt ₇ /CeO ₂ (110), and Pt ₁ /Ce _{1-x} O ₂ (110) surfaces under different temperatures. (Table S4-6)	S9-10
10. Equilibrium coverages (θ) of all species on Pt ₁ /CeO ₂ (110), Pt ₇ /CeO ₂ (110) and Pt ₁ /Ce _{1-x} O ₂ (110) surfaces under different temperatures. (Table S7-9)	S11-12
11. Side view of the initial states (IS), the corresponding transition states (TS) and final states (FS) of R6-R11 on the $Pt_1/CeO_2(110)$, $Pt_7/CeO_2(110)$ and $Pt_1/Ce_{1-x}O_2(110)$ surfaces, along with the adsorption energies (E_{ads}). (Figure S6)	S13
12. Top view of the initial states (IS), the corresponding transition states (TS) and final states (FS) of R2-R11 on the $Pt_1/CeO_2(110)$, $Pt_7/CeO_2(110)$. (Figure S7)	S14
13. Comparison of previous work on the mechanism of MD reaction over CeO_2 -supported catalysts. (Table S10)	S15

1. The calculation of the surface energy.

Surface energy (SE) is defined as the amount of energy required to cleave an infinite crystal into two parts, i.e. the energy required to form a new surface. It is calculated as shown in Eq 1:

$$E_{surf} = \frac{1}{2A} (E_{slab} - E_{bulk}) \tag{1}$$

where E_{slab} is the total energy of the slab, E_{bulk} is the energy in the bulk. In general, it is known that the smaller the surface energy is, the easier is to form a surface, i.e., the surface with smaller surface energy is easier to be exposed.

Figure S1. The top view of the optimized structures of $CeO_2(100)$, $CeO_2(110)$ and $CeO_2(111)$ surfaces. O: red; Ce: yellow.

2. Energy test for *k*-point.

Table S1. Binding energy (*BE*) of the Pt atom on CeO₂(110) surface (in eV) when *k*-point are $3 \times 3 \times 1$ and $5 \times 5 \times 1$, respectively

<i>k</i> -point	$E_{\rm slab}/{\rm eV}$	$E_{\rm Pt}/{\rm eV}$	$E_{\rm total}/{\rm eV}$	BE/eV
3×3×1	-408.747	-0.570	-412.013	-2.696
5×5×1	-408.747	-0.570	-412.012	-2.695

As shown in Table S1, binding energies (*BE*) of the Pt atom with the support $CeO_2(110)$ are calculated. When the *k*-point is set to $3\times3\times1$, the binding energy is -2.696 eV, and when the *k*-point is increased to $5\times5\times1$, the binding energy has only a small change (0.001 eV). Therefore, in order to save computing resources, the *k*-point of $3\times3\times1$ is used to complete all calculations.

3. Energy test for cut-off energy (ENCUT).

Figure S2. Take the energy E_0 of CH₃OH adsorbed on CeO₂(110) surface as an

example for ENCUT test.

In order to make reasonable use of computing resources, we tested the cutoff energy (ENCUT) required for the calculation. If the ENCUT value is too small, the system will be difficult to converge, and if it is too large, it will take longer to waste computing resources. As shown in Figure S2, for the system we want to study, when the ENCUT value is 500 eV, it can not only ensure the convergence of the system, but also save computing resources.

4. Energy test for supercell size

Table S2. Adsorption energy of methanol molecules on $Pt/CeO_2(110)(2\times1)$ and $Pt/CeO_2(110)(2\times2)$ (Unit: eV)

	Adsorption energy of methanol molecules(eV)			
CeO ₂ supercell	Pt ₁ /CeO ₂ (110)	Pt ₇ /CeO ₂ (110)	Pt ₁ /Ce _{1-x} O ₂ (110)	
2×1	-1.173	-0.996	-0.737	
2×2	-1.194	-0.987	-0.721	

As shown in Table S2, a very small difference(about 0.02eV) in adsorption energy on supercell $CeO_2(110)(2\times1)$ and supercell $CeO_2(110)(2\times2)$. Therefore, in order to save computing resources, $CeO_2(110)(2\times1)$ is used to complete all calculations.

5. Screening of the Pt sites.

Figure S3. Pt single-atom binding site screening of Pt₁/CeO₂(110). O: red; Ce: yellow; Pt: blue.

As shown in Figure S3, a total of 7 Pt single-atom binding sites were screened, and the figure shows the optimized model of the initial structure of each site, excluding O-O-bridge 1, which has the lowest binding energy, and OO-bridge 2, which has severe deformation. Both Ce-top and O-Ce-bridge tend to bind to the oxygen site, and O-O-bridge 3 tends to bind to the O-hol site. The final comparison between the O-top and O-hol sites, and the optimal adsorption energy of CH₃OH on the O-Hol and O-Top models are -0.250 eV and -1.173 eV, respectively. Therefore, the O-Top site is the best binding site.

6.	Size	screenin	g of	Pt _n	clusters	on	CeO ₂ ((110)).
----	------	----------	------	-----------------	----------	----	--------------------	-------	----

Pt ₄ /CeO ₂	Pt ₆ /CeO ₂	Pt ₇ /CeO ₂	Pt ₁₀ /CeO ₂
Average <i>BE</i> =-1.63 eV	Average <i>BE</i> =-1.15 eV	Average BE =-1.67 eV	Average <i>BE</i> =-1.49 eV

Figure S4. Comparison of average binding energies (BE) of Pt₄, Pt₆, Pt₇ and Pt₁₀

clusters loaded on CeO₂(110). O: red; Ce: yellow; Pt: blue.

Average BE indicates the average binding energies (BE) of the Pt atoms bonded

to CeO₂(110) (Average $BE = \frac{BE}{N_{Pt}}$). As shown in Figure S4, the Pt₇ cluster has the largest Average *BE* (-1.67 eV), which indicates that the Pt₇ cluster is the most stable on the CeO₂(110), therefore the Pt₇/CeO₂(110) model is finally chosen.

7. Screening of methanol molecular adsorption sites.

As shown in Figure S5, five possible adsorption configurations are calculated (O-Top, Ce-Top, O-O-Bri, O-Ce-Bri, Pt-Top, and Pt-Pt-Bri sites). The interfacial adsorption sites of methanol on $Pt_1/CeO_2(110)$ and $Pt_7/CeO_2(110)$ are also screened, and the adsorption energy of methanol molecules at the interfacial sites is very small, and a methanol molecule runs to the surface site of the Pt atom after structural optimization (O-Top site on $Pt_1/CeO_2(110)$). This indicates that the interface of CeO_2 with the Pt atom/cluster has no significant effect on the elementary steps.

Figure S5. Screening of methanol molecular adsorption sites on $Pt_1/CeO_2(110)$, $Pt_7/CeO_2(110)$, and $Pt_1/Ce_{1-x}O_2(110)$. H: white; C: black; O of the CH₃OH molecule:

pink; O of the CeO₂: red; Ce: yellow; Pt: blue.

8. Methanol adsorption.

Table S3. The change of bond lengths before and after methanol adsorption, as well as the adsorption energy and adsorption mode on the surface of different catalysts.

	Adsorption energy (eV)	binding configuration	C-H bond Length (Å)	O-H bond Length (Å)	C-O bond Length (Å)
Gas phase			1.103	0.971	1.432
Pt ₁ /CeO ₂	1.17	top-bound through oxygen	1.098	0.976	1.457
Pt7/CeO2	1.00	top-bound through oxygen	1.100	0.982	1.439
$Pt_1/Ce_{1-x}O_2$	0.74	top-bound through hydrogen	1.134	1.053	1.368

7. Microkinetic modeling analysis of MD reaction

On the basis of DFT calculated results, a microkinetic modeling of MD reaction over Pt₁/CeO₂(110), Pt₇/CeO₂(110) and Pt₁/Ce_{1-x}O₂(110) surfaces are carried out. Based on the reactions (1)-(11) rate equations as below, the equilibrium coverages (θ) of all species are solved by Fortran program, as listed in the Table S7-S9.

$$(1) \frac{d\theta_{CH30H*}}{dt} = k_1 p_{CH30H} / p^{\Theta} \theta^* - k_{-1} \theta_{CO*} - k_2 \theta_{CH30H*} + k_{-2} \theta_{CH30*} \theta_{H*} - k_6 \theta_{CH30H*} + k_{-6} \theta_{CH30$$

$$\begin{aligned} \left(4 \right) \frac{d\theta_{CHO}}{dt} &= k_4 \theta_{CHO} + k_4 \theta_{CHO} \theta_{H^*} + k_3 \theta_{CHO} + k_{10} \theta_{CHOH^*} - k_{-10} \theta_{CHO} + \theta_{H^*} = r_4 - r_5 + r_{10} \\ \frac{d\theta_{CO}}{dt} &= k_5 \theta_{CHO} + k_{11} \theta_{COH^*} = r_5 + r_{11} \\ \left(6 \right) \frac{d\theta_{CH2OH}}{dt} &= k_6 \theta_{CH3OH^*} - k_6 \theta_{CH2OH^*} \theta_{H^*} - k_7 \theta_{CH2OH^*} + k_7 \theta_{CH2O^*} \theta_{H^*} - k_8 \theta_{CH2OH^*} + k. \\ &= k_6 \theta_{CH3OH^*} \theta_{H^*} \\ = r_6 - r_7 - r_8 \\ \frac{d\theta_{CHOH^*}}{dt} &= k_8 \theta_{CH2OH^*} - k_8 \theta_{CHOH^*} \theta_{H^*} - k_9 \theta_{CHOH^*} + k_9 \theta_{COH^*} \theta_{H^*} - k_{10} \theta_{CHOH^*} + k_{-10} \theta_{CHO^*} + k_{-10} \theta_{CHO^*} + k_{-10} \theta_{CHO^*} + k_{-10} \theta_{CHO^*} - k_{-10} \theta_{-1} + k_{-10} \theta_{CHO^*} - k_{-10} \theta_{-1} - k_{-10} \theta_{CHO^*} - k_{-10} \theta_{-1} - k_{-10} \theta_{-1} - k_{-10} \theta_{-1} + k_{-1} \theta_$$

Table S4. Reaction rate constant (k_+/k_-) of the elementary reaction step on

	373K	423K	473K	523K	573K
k_1	2.49×10 ⁸	2.34×10^{8}	2.21×10^{8}	2.10×10^{8}	2.01×10^{8}
k_{-1}	3.33×10 ⁻³	2.40×10^{-1}	6.94×10^{0}	1.05×10^{2}	9.76×10^{2}
k_2	5.27×10^{10}	1.53×10^{11}	3.57×10 ¹¹	7.12×10 ¹¹	1.27×10^{12}
<i>k</i> ₋₂	3.69×10 ⁻⁴	6.13×10 ⁻²	3.45×10^{0}	9.01×10^{1}	1.33×10^{3}
k_3	2.36×10^{2}	3.27×10^{2}	2.61×10 ³	8.13×10 ⁵	1.89×10^{5}
<i>k</i> ₋₃	9.12×10 ⁶	4.13×10 ⁷	1.36×10^{8}	3.56×10^{8}	7.89×10^{8}
k_4	1.87×10^{0}	8.61×10^{1}	1.77×10^{3}	2.04×10^{4}	1.54×10^{5}
<i>k</i> -4	4.95×10 ⁻²²	8.02×10 ⁻¹⁸	1.66×10 ⁻¹⁴	8.00×10 ⁻¹²	1.31×10 ⁻⁹

$Pt_1/CeO_2(110)$ surface u	under different temperatures.
-----------------------------	-------------------------------

k_5	2.28×10^{6}	4.08×10^{7}	4.43×10 ⁷	8.58×10^{8}	1.32×10^{9}
k_{-5}	2.09×10 ⁻²¹	8.86×10 ⁻¹⁸	1.24×10 ⁻¹³	1.26×10 ⁻¹¹	4.97×10 ⁻⁸
k_6	2.12×10 ⁵	3.18×10^{6}	2.68×10^{7}	1.50×10^{8}	6.26×10^{8}
<i>k</i> ₋₆	1.04×10^{11}	2.49×10 ¹¹	4.87×10 ¹¹	8.33×10 ¹¹	1.29×10^{12}
k_7	2.49×10^{3}	7.80×10^{2}	7.64×10^{3}	1.09×10^{6}	2.25×10^{5}
<i>k</i> _7	1.17×10^{2}	2.14×10^{3}	2.11×10^{4}	1.35×10^{5}	6.23×10 ⁵
k_8	3.23×10 ¹³	4.65×10 ¹³	6.21×10 ¹³	7.85×10^{13}	9.53×10 ¹³
<i>k</i> -8	3.91×10 ¹²	7.24×10^{12}	1.17×10^{13}	1.72×10^{13}	2.37×10 ¹³
k_9	4.56×10 ⁻¹²	2.74×10-9	4.28×10-7	2.56×10-5	7.52×10-4
k_9	2.10×10^{3}	1.96×10^{4}	1.15×10^{5}	4.77×10^{5}	1.55×10^{6}
k_{10}	3.51×10 ³	4.22×10^{4}	3.01×10 ⁵	1.48×10^{6}	5.58×10^{6}
<i>k</i> ₋₁₀	9.21×10 ⁻³	4.48×10 ⁻¹	9.61×10^{0}	1.15×10^{2}	6.81×10^{3}
k_{11}	2.86×10 ⁻³	1.82×10 ⁻¹	4.78×10^{0}	6.74×10^{1}	5.98×10^{2}
<i>k</i> ₋₁₁	6.00×10 ⁻²⁴	2.70×10 ⁻¹⁹	1.26×10 ⁻¹⁵	1.16×10 ⁻¹²	3.26×10 ⁻¹⁰

Table S5. Reaction rate constant (k_+/k_-) of the elementary reaction step on

 $Pt_7/CeO_2(110)$ under different temperatures.

	373K	423K	473K	523K	573K
k_1	2.49×10^{8}	2.34×10^{8}	2.21×10^{8}	2.10×10^{8}	2.01×10^{8}
k_{-1}	3.07×10 ⁻²	1.14×10^{0}	1.95×10^{1}	1.93×10^{2}	1.27×10^{3}
k_2	4.61×10^{4}	2.22×10^{5}	7.82×10^{5}	2.19×10^{6}	5.17×10^{6}
<i>k</i> ₋₂	2.63×10^{4}	1.55×10^{5}	1.04×10^{6}	5.59×10^{7}	5.91×10^{7}
k_3	4.14×10^{10}	4.28×10^{10}	7.26×10^{10}	2.19×10^{11}	6.70×10^{11}
<i>k</i> ₋₃	2.93×10^{8}	1.27×10^{9}	4.02×10^{9}	1.02×10^{10}	2.21×10^{10}
k_4	6.30×10 ¹¹	1.11×10^{12}	1.76×10^{12}	2.57×10^{12}	3.52×10^{12}
<i>k</i> ₋₄	3.03×10 ³	4.80×10^{4}	1.58×10^{5}	1.01×10^{6}	3.05×10^{6}
k_5	6.94×10 ⁹	2.05×10^{10}	4.83×10^{10}	9.69×10 ¹⁰	1.72×10^{11}
<i>k</i> -5	1.02×10^{7}	5.23×10 ⁷	1.89×10^{8}	5.36×10^{8}	1.26×10^{9}
k_6	5.59×10^{2}	4.99×10^{3}	2.85×10^{4}	1.17×10^{5}	3.81×10^{5}
<i>k</i> -6	7.15×10^{3}	7.65×10^{4}	4.94×10^{5}	2.22×10^{6}	7.67×10^{6}
k_7	8.46×10^{8}	2.59×10^{9}	6.30×10 ⁹	1.30×10^{10}	2.38×10^{10}
<i>k</i> ₋₇	3.50×10 ⁻²	2.80×10^{0}	8.88×10^{1}	1.45×10^{3}	1.46×10^{4}
k_8	5.64×10 ⁻²	4.14×10^{0}	1.23×10^{2}	1.93×10^{3}	1.88×10^{4}
<i>k</i> ₋₈	7.02×10^{2}	8.78×10^{3}	8.22×10^{4}	4.02×10^{5}	9.92×10 ⁵
k_9	2.48×10^{0}	1.28×10^{2}	2.86×10^{3}	3.56×10^{4}	2.86×10^{5}
<i>k</i> _9	9.01×10 ⁻¹⁷	3.56×10 ⁻¹³	2.44×10 ⁻¹⁰	4.80×10 ⁻¹⁷	3.75×10 ⁻⁶
k_{10}	3.73×10^{2}	2.65×10^{3}	9.82×10 ³	8.64×10^{4}	3.50×10^{5}
<i>k</i> ₋₁₀	2.26×10 ⁻¹⁴	3.49×10 ⁻¹¹	1.14×10 ⁻⁸	1.24×10 ⁻⁶	5.97×10 ⁻⁵
k_{11}	1.28×10^{2}	3.34×10^{2}	6.51×10^{3}	5.78×10^{4}	2.97×10^{5}
<i>k</i> ₋₁₁	2.19×10-9	7.19×10 ⁻⁷	6.95×10 ⁻⁵	2.81×10 ⁻³	5.97×10 ⁻²

Table S6. Reaction rate constant (k_+/k_-) of the elementary reaction step on Pt₁/Ce₁.

	373K	423K	473K	523K	573K
k_1	2.49×10 ⁸	2.34×10^{8}	2.21×10^{8}	2.10×10^{8}	2.01×10^{8}
k_{-1}	2.68×10^{4}	4.22×10^{5}	3.66×10^{6}	2.07×10^{7}	8.52×10^{7}
k_2	1.32×10^{15}	9.33×10 ¹⁴	7.14×10^{14}	5.79×10^{14}	4.89×10 ¹⁴
<i>k</i> ₋₂	3.54×10^{1}	1.11×10^{3}	1.70×10^{4}	1.55×10^{5}	9.72×10 ⁵
k_3	7.62×10^{8}	1.74×10^{9}	3.37×10 ⁹	5.84×10^{9}	9.27×10 ⁹
<i>k</i> ₋₃	1.26×10 ⁻⁵	8.91×10 ⁻⁴	2.59×10 ⁻²	4.00×10 ⁻¹	3.87×10^{0}
k_4	2.00×10^{14}	1.30×10^{14}	9.37×10 ¹³	7.25×10^{13}	5.92×10 ¹³
<i>k</i> _4	1.23×10 ⁻¹⁴	1.66×10 ⁻¹¹	4.89×10-9	4.90×10-7	2.21×10-5
k_5	1.19×10^{7}	6.24×10^{7}	2.32×10^{8}	6.72×10^{8}	1.63×10 ⁹
<i>k</i> -5	1.43×10 ⁻⁷	3.77×10-5	3.08×10-3	1.09×10 ⁻¹	2.09×10^{0}
k_6	5.93×10 ⁷	2.60×10^{8}	8.43×10^{8}	2.20×10^{9}	4.86×10^{9}
<i>k</i> -6	7.57×10 ⁻¹⁷	3.22×10 ⁻¹³	2.35×10 ⁻¹⁰	4.89×10 ⁻⁸	4.03×10 ⁻⁶
k_7	2.06×10^{12}	2.39×10^{12}	2.70×10^{12}	3.01×10^{12}	3.32×10^{12}
<i>k</i> . ₇	5.71×10^{5}	2.97×10^{6}	1.10×10^{7}	3.19×10 ⁷	7.77×10^{7}

 $_xO_2(110)$ under different temperatures.

Table S7. Equilibrium coverages (θ) of all species on Pt₁/CeO₂(110) surface under

	373K	423K	473K	523K	573K
$ heta_{ ext{CH3OH}*}$	0.45×10 ⁻²	0.15×10 ⁻²	0.61×10 ⁻³	0.29×10 ⁻³	0.16×10 ⁻³
$ heta_{ m CH3O^*}$	0.50×10^{0}	0.52×10^{0}	0.61×10^{0}	0.79×10^{0}	0.89×10^{0}
$ heta_{ ext{CH2O}*}$	0.12×10 ⁻⁶	0.19×10 ⁻⁶	0.21×10 ⁻⁵	0.11×10 ⁻²	0.33×10 ⁻³
$ heta_{ ext{CHO}^*}$	0.47×10 ⁻¹¹	0.23×10 ⁻⁹	0.57×10 ⁻⁸	0.45×10 ⁻⁷	0.19×10 ⁻⁶
$ heta_{\mathrm{CO}^*}$	0.89×10 ⁻¹⁴	0.91×10 ⁻¹¹	0.33×10 ⁻⁹	0.80×10 ⁻⁷	0.78×10 ⁻⁶
$ heta_{ ext{CH2OH}*}$	0.50×10 ⁻⁷	0.22×10 ⁻⁶	0.57×10 ⁻⁶	0.82×10 ⁻⁶	0.10×10 ⁻⁵
$ heta_{ ext{CHOH}*}$	0.83×10 ⁻⁶	0.29×10 ⁻⁵	0.80×10 ⁻⁵	0.18×10 ⁻⁴	0.38×10 ⁻⁴
$ heta_{ m COH^*}$	0.61×10 ⁻²⁶	0.15×10 ⁻²²	0.86×10 ⁻²⁰	0.11×10 ⁻¹⁷	0.12×10 ⁻¹⁵
$ heta_{ ext{H}^*}$	0.49×10^{0}	0.48×10^{0}	0.38×10^{0}	0.21×10^{0}	0.11×10^{0}
$ heta_*$	0.32×10 ⁻²	0.39×10 ⁻²	0.21×10 ⁻²	0.18×10 ⁻²	0.40×10 ⁻³

different temperatures.

Table S8. Equilibrium coverages (θ) of all species on Pt₇/CeO₂(110) surface under

	373K	423K	473K	523K	573K
$ heta_{ ext{CH3OH}*}$	0.99×10^{0}	0.98×10^{0}	0.96×10^{0}	0.94×10^{0}	0.89×10^{0}
$ heta_{ m CH3O^*}$	0.11×10 ⁻⁵	0.51×10 ⁻⁵	0.10×10 ⁻⁴	0.94×10 ⁻⁵	0.68×10 ⁻⁵
$ heta_{ ext{CH2O}*}$	0.74×10 ⁻⁷	0.20×10 ⁻⁶	0.44×10 ⁻⁶	0.84×10 ⁻⁶	0.14×10 ⁻⁵

different to	emperatures.
--------------	--------------

$\theta_{\rm CO^*}$ 0.12×10 ⁻² 0.57×10 ⁻² 0.19×10 ⁻¹ 0.48×10 ⁻¹	0.05×10-1
	0.95×10^{-1}
$\theta_{\rm CH2OH^*}$ 0.66×10 ⁻⁶ 0.19×10 ⁻⁵ 0.44×10 ⁻⁵ 0.84×10 ⁻⁵	0.14×10 ⁻⁴
$\theta_{\text{CHOH}*}$ 0.91×10 ⁻¹⁵ 0.20×10 ⁻¹² 0.13×10 ⁻¹⁰ 0.36×10 ⁻⁹	0.51×10 ⁻⁸
$\theta_{\rm COH^*}$ 0.28×10 ⁻²² 0.32×10 ⁻¹⁸ 0.50×10 ⁻¹⁵ 0.14×10 ⁻¹²	0.14×10 ⁻¹⁰
$\theta_{\rm H^*}$ 0.44×10 ⁻² 0.12×10 ⁻¹ 0.16×10 ⁻¹ 0.17×10 ⁻¹	0.19×10 ⁻¹
$\theta_* \qquad 0.15 \times 10^{-5} \qquad 0.13 \times 10^{-6} \qquad 0.74 \times 10^{-5} \qquad 0.43 \times 10^{-5}$	0.63×10 ⁻⁵

Table S9. Equilibrium coverages (θ) of all species on $Pt_1/Ce_{1-x}O_2(110)$ surface under

	373K	423K	473K	523K	573K
$ heta_{ ext{CH3OH}*}$	0.19×10 ⁻⁶	0.25×10 ⁻⁶	0.31×10 ⁻⁶	0.36×10 ⁻⁶	0.41×10 ⁻⁶
$ heta_{ m CH3O^*}$	0.22×10^{0}	0.12×10^{0}	0.65×10 ⁻¹	0.36×10 ⁻¹	0.22×10 ⁻¹
$ heta_{ ext{CH2O}*}$	0.83×10 ⁻⁶	0.16×10 ⁻⁵	0.23×10 ⁻⁵	0.29×10 ⁻⁵	0.34×10 ⁻⁵
$ heta_{ ext{CHO}*}$	0.14×10^{0}	0.18×10^{0}	0.19×10^{0}	0.16×10^{0}	0.10×10^{0}
$ heta_{\mathrm{CO}^*}$	0.87×10 ⁻³	0.58×10 ⁻²	0.23×10 ⁻¹	0.61×10 ⁻¹	0.11×10^{0}
$ heta_{ ext{CH2OH}*}$	0.56×10 ⁻¹¹	0.29×10 ⁻¹⁰	0.10×10 ⁻⁹	0.29×10 ⁻⁹	0.66×10 ⁻⁹
$ heta_{ ext{H}^*}$	0.64×10^{0}	0.69×10^{0}	0.72×10^{0}	0.75×10^{0}	0.77×10^{0}
$ heta_*$	0.30×10 ⁻³	0.56×10 ⁻³	0.73×10 ⁻³	0.79×10 ⁻³	0.26×10 ⁻³

different temperatures.

Figure S5. Side view of the initial states (IS), the corresponding transition states (TS) and final states (FS) of R6-R11 on the Pt₁/CeO₂(110), Pt₇/CeO₂(110) and Pt₁/Ce₁₋ $_xO_2(110)$ surfaces, along with the adsorption energies (E_{ads}). H: white; C: black; O of the CH₃OH molecule: pink; O of the CeO₂: red; Ce: yellow; Pt: blue.

Figure S6. Top view of the initial states (IS), the corresponding transition states (TS) and final states (FS) of R2-R11 on the $Pt_1/CeO_2(110)$, $Pt_7/CeO_2(110)$. H: white; C: black; O of the CH₃OH molecule: pink; O of the CeO₂: red; Ce: yellow; Pt: blue.

Table S10. Compar	ison of previous work on the mechanism of	MD reaction over Ce	D2-supported catalysts.	
Catalyst	Structural model	Research method	Mechanism	RDS en
$\begin{array}{l} Pt_{1}/Ce_{1,x}O_{2}(110) \ , \\ Pt_{7}/CeO_{2}(110), \\ Pt_{1}/Ce_{1,x}O_{2}(110) \end{array}$		DFT calculations	СН₃ОН→СН₃О→СН₂О→СНО→СО	0. 0.
Pt ₁ /CeO ₂	Pt-CeO ₂ interaction is still unclear	DRIFTS	СН₃ОН→СН₃О→СО	
CeO ₂ (111)	DIG 100 DIG 10	TPSR-IR and DFT	CH ₃ OH→formate	
Cu/CeO ₂	Cu clusters loaded on CeO ₂	TPD-DRIFTS	CH ₃ OH→CH ₃ O→formate→CO	
Ni ₃ /CeO ₂ (11 <u>1</u>) Ni ₃ /CeO ₂ (<u>1</u> 1 <u>1</u>)	and and and and and and and and	DFT calculations	CH₃OH→CH₃O→CH₂O→CO	.1.