Supporting Information

Linear $\boldsymbol{\pi}$-conjugated units of the $D_{\infty h}$ point group as superior ultraviolet birefringent units

Rong Yang, , Abudukadi Tudi, ${ }^{* a b}$ Yu Dang, ${ }^{\text {ab }}$ Kewang Zhang, ${ }^{\text {ab }}$ and Hongsheng Shi ${ }^{* a b}$
a. Research Center for Crystal Materials, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics \& Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic

Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. b. Center of Materials Science and Optoelectronics Engineering, University of

Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding author: shihs@ms.xjb.ac.cn; abdkd@ms.xjb.ac.cn

Calculations detials

The electronic structures and optical properties were obtained on the basis of ab initio calculations implemented in the CASTEP package through density functional theory (DFT). ${ }^{1}$ The generalized gradient approximation (GGA) ${ }^{2}$ was adopted, and Perdew-Burke-Ernzerhof (PBE) ${ }^{3}$ functional was chosen to calculate the exchange-correlation potential, with an energy cutoff of 750 eV . The numerical integration of the Brillouin zone was performed using a $3 \times 3 \times 2$ Monkhorst-Pack k-point sampling. Normconserving pseudopotentials were used with the following valence electron
 $2 s^{2} 2 p^{4}$ and $F-2 s^{2} 2 p^{5}$. In addition, B3LYP (Becke, three-parameter, Lee-Yang-Parr) exchange-correlation functional with the Lee-Yang-Parr correlation functional at the $6-311 \mathrm{G}$ basis set in Gaussian was employed to calculate the groups.

Table S1 Performances of $\left(\mathrm{BO}_{2}\right)$ - and $\left(\mathrm{BO}_{3}\right)^{3-\text { anions }}$

	BO_{2}	BO_{3}
Polarizability anisotropy	9.2	8.3
HOMO-LUMO gap	14.4	7
Type of hybrid orbitals of B atom in ground state	sp	sp^{2}
Theoretical bond angle of $\mathrm{O}-\mathrm{B}-\mathrm{O}\left({ }^{\circ}\right)$	180	120

Figure S1 Calculated phonon dispersion curves of NaBO_{2}.

Figure S2 Calculated birefringence dispersion curves of NaBO_{2}
(a)

- Si
- Li
- C
- N
$\odot \mathrm{O}$

Figure S3 Crystal structure of (a) $\mathrm{Si}_{2} \mathrm{CN}_{4}$, (b) $\mathrm{BF}_{4} \mathrm{NO}_{2}$, and (c) $\mathrm{Li}_{3} \mathrm{BN}_{2}$

References

1 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. - Cryst. Mater. 2005, 220, 567-572.

2 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
3 Rappe, A.; Rabe, K.; Kaxiras, E.; Joannopoulos, J. D. Phys. Rev. B 1990, 41, 1227.

