Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Spectroscopic Characterization, Molecular Docking and Machine Learning Studies of Sulphur containing Hydrazide Derivatives

Soni Shukla, Poonam Rawat, Pulkit Sharma, Prince Trivedi, Faraz Ghous, Abha Bishnoi* Department of Chemistry, University of Lucknow, Lucknow- 226007, Uttar Pradesh, India Email: abhabishnoi5@gmail.com

Table S1. The comparative study of overview of TSCZ and TCHZ at different basis sets.

Table S2. The comparative study of Total Energy of optimized structures at different basis sets.

Table S3. Calculated and experimental FT-IR values for TSCZ at different basis sets.

Table S4. Calculated and experimental FT-IR values for TCHZ at different basis sets.

 Table S5.
 NMR for TSCZ at different basis sets.

Table S6. NMR for TCHZ at different basis sets.

Table S7. NBO calculation of TSCZ using TD/DFT B3LYP 631G (d, p) basis set.

Table S8. NBO calculation of TSCZ using TD/DFT B3LYP 631G (d', p') basis set.

Table S9. NBO of TSCZ using TD/DFT B3LYP 6-311+G (d, p) basis set.

Table S10. NBO of TSCZ using TD/DFT CAM- B3LYP 6-311+G (d, p) basis set.

Table S11. NBO calculation of TCHZ using TD/DFT B3LYP 631G (d, p) basis set.

Table S12. NBO calculation of TCHZ using TD/DFT B3LYP 631G (d', p') basis set.

Table S13. NBO of TCHZ using TD/DFT B3LYP 6-311+G (d, p) basis set.

Table S14. NBO of TCHZ using TD/DFT CAM- B3LYP 6-311+G (d, p) basis set.

Table S15. Local electronic descriptors (Fukui function, local softness and local electrophilicity) calculated at different functionals.

Table S16. Local reactivity at different basis sets.

Table S17. Details of molecular docking results: the summary of binding affinities (kcal/mol) and the H-bond as hydrophobic interactions.

Table S18. Molecular properties of the molecules under study of physicochemical properties of TSCZ and TCHZ.

Supplementary Table S1. The comparative study of overview of TSCZ and TCHZ at different basis sets.									
Properties		TSCZ		ТСНZ					
Basis set	6-31G (d,p)	6-31G (d,p) 6-31+G (d',p') 6-311+G (d,p)			6-31+G (d ', p')	6-311+G (d,p)			
Charge	0	0	0	0	0	0			
Spin	S	S	S	S	S	S			
Energy	-603.5490	-603.5638	-603.6404	-658.8712	-658.8889	-658.9792			
(Hartree)									
RMS Gradient	0.00001	0.00006	0.00008	0.00000	0.00001	0.00100			
Norm									
(Hartree/Bohr)									
Dipole moment	4.0744	3.8856	3.8040	5.0402	4.8368	4.7930			
(Debye)									
Polarizability (α)	48.6431	61.0295	61.7657	57.0082	70.9082	71.6270			
(a.u.)									
Point group	C_1	C_1	C_1	C_1	C_1	C_1			

Supplementary T	able S2. The comp	arative study of Total	Energy of optimized stru	uctures at differen	t basis sets.	
Name		TSCZ			TCHZ	
	6-31G (d,p)	6-31+G(d',p')	6-311+G(d,p)	6-31G (d,,p)	6-31+G (d', p')	6-311+G (d,p)
Zero-point	0.0786	0.0783	0.0782	0.0958	0.0954	0.0954
correction						
(Hartree						
/Particle)						
Thermal	0.0846	0.0844	0.0843	0.1033	0.1030	0.1028
correction to						
Energy						
Thermal	0.0855	0.0854	0.0853	0.1042	0.1039	0.1037
correction to						
Enthalpy						
Thermal	0.0491	0.0487	0.0486	0.0638	0.0629	0.0635
correction to						
Gibbs Free						
Energy						
Sum of	-603.4683	-603.4855	-603.5623	-658.7754	-658.7935	-658.8838
electronic and						
zero-point						
Energies	(02.4(22	(02.4702		(50 7(00	(50 50 50	(50.05(4
Sum of	-603.4623	-603.4793	-603.5561	-658.7680	-658.7859	-658.8764
electronic and						
thermal						
Energies	(02.4(1.4	(02.470.4	(02,5552)		(50 7050	
Sum of	-603.4614	-603.4/84	-603.5552	-658./6/0	-658./850	-638.8/34
electronic and						
thermal						
Enthalples	(02.4070	(02 5151	(02 5010	(50.0074	(50.02(0	(50.0157
Sum of	-603.4978	-603.5151	-603.5918	-638.80/4	-658.8260	-638.9157
electronic and						
thermal Free						

Energies						
Total entropy Cal/Mol-Kelvin	76.613	77.185	77.120	85.009	86.442	84.674

Supplement	upplementay Table S3. Calculated and experimental FT-IR values for TSCZ at different basis sets.										
	Scaled	theoretical fr	equency								
B3LYP	B3LYP	B3LYP	Cam-	B3WP91	Experimen	Assignments					
631-G(d,p)	631-G(d', p')	6311+	B3LYP	6311+	tal						
		G(d, p)	6311+	G(d, p)							
			G(d, p)								
					496	$\omega(N_9H_{10}C_3N_5)(37) + \tau(H_8C_3N_2S_4)(24) + \omega(C_3H_8N_1N_2)$					
493.161	485.730	486.534	488.153	485.156		$)(21)+\tau(H_7N_1N_2H_8)(10)$					
					539	$\rho(H_8C_3N_2+N_1C_3N_2)(24)+$ $\tau(H_8C_3N_2S_4)(14)+$ ρ					
						$(N_5N_2C_3+S_4C_3N_2)(14)+ \delta'(H_8N_1N_2+ N_1C_3N_2)(7)+$					
						$\vartheta(N_1N_2)(6) + \delta'(N_5S_4C_3 + N_5N_2C_3 + S_4N_2C_3)(6) +$					
580.7685	577.223	577.436	581.910	582.592		$\omega(N_2N_5S_4C_3)(5) + \vartheta(C_3S_4)(5) + \vartheta(C_3N_5)(5)$					
602.8814	596.549	598.807	612.509	602.105	622	$\omega(N_2N_5S_4C_3)(81) + \omega(H_9H_{10}C_3N_5)(6) + \omega(C_3H_8N_1N_2)(5)$					
688.9626	688.648	688.836	706.313	701.882	728	$\vartheta(C_3S_4)(61) + \vartheta(N_1N_2)(10) + \vartheta(N_5H_{10})(9) + \vartheta(N_5C_3)(8)$					
					-	$\omega(H_7H_6N_2N_1)(49) + \vartheta(N_1N_2)(29) + \delta_{SC}(H_{10}C_3N_5 +$					
927.1226	912.609	912.748	922.844	919.737		$H_{10}H_9N_5+H_{10}H_9N_5)(8)+\vartheta(S_4C_3)(5)$					
1012.682	997.046	996.982	997.558	998.123	-	$\delta_{SC}(H_{10}C_3N_2 + H_8H_9N_5 + C_3H_9N_5)(29) +$					

						$\omega(H_7H_6N_2N_1)(25)+ \vartheta(N_2C_3)(23)+$
						$\rho(H_8C_3N_2+N_1C_3N_2)(8) \rho(H_{10}H_9N_5+C_3H_9N_5)(7)$
					1092	$\vartheta(N_1N_2)(52) + \vartheta(C_3N_5)(23) + \omega(H_7H_6N_2N_1)(11) +$
1190.468	1176.845	1173.056	1201.263	1192.197		$\delta_{SC}(H_{10}C_3N_5 + H_{10}H_9N_5 + C_3H_9N_5)(6)$
					-	$\vartheta(C_3N_5)(40) + \delta'(H_8N_1N_2 + H_8C_3N_2 + N_1C_3N_2)(20) +$
						$\rho(N_5N_2C_3+S_4N_2C_3)(14)+\vartheta(C_3S_4)(12)+$
1261.7	1249.172	1246.153	1268.128	1261.974		$\rho(H_{10}H_9N_5+C_3H_9N_5)(5)$
					-	$\delta_{SC}(H_6N_1N_2+H_6H_7N_1+N_2H_7N_1)(68)+$
1295.116	1282.457	1285.899	1292.868	1289.518		$\rho(H_6H_7N_1+N_2H_7N_1)(21)+\omega(H_7H_6N_2N_1)(8)$
					1470	$\vartheta(N_2C_3)(44) + \delta_{SC}(H_{10}C_3N_5 + H_{10}H_9N_5 + C_3H_9N_5)(15) +$
1354.03	1341.062	1337.198	1362.663	1352.715		$\vartheta(C_3S_4)(12) + \delta'(N_5S_4C_3 + N_5N_2C_3 + S_4N_2C_3)(9)$
					-	$\delta'(H_8N_1N_2+H_8C_3N_2+N_1C_3N_2)(49)+$
1442.311	1435.741	1437.405	1464.61	1445.087		$\rho(H_8C_3N_2+N_1C_3N_2)(25)+\vartheta(N_2C_3)(9)+\vartheta(C_3N_5)(7)$
					1578	$\rho(H_{10}H_9N_5+C_3H_9N_5)(65)+$
1556.356	1548.295	1550.883	1557.941	1546.684		$\delta_{\rm SC}({\rm H}_{10}{\rm C}_{3}{\rm N}_{5}+{\rm H}_{10}{\rm H}_{9}{\rm N}_{5}+{\rm C}_{3}{\rm H}_{9}{\rm N}_{5})(24)+\vartheta({\rm C}_{3}{\rm N}_{5})(7)$
					1821	$\rho(H_6H_7N_1+N_2H_7N_1)(63)+$
1628.858	1620.034	1624.578	1631.015	1624.596		$\delta_{SC}(H_6N_2N_1 + H_6H_7N_1 + N_2H_7N_1)(29)$
3258.759	3274.947	3271.163	3313.852	3282.379	2688	ϑ (N ₁ H ₆)(75)+ ϑ (N ₁ H ₇)(24)
3333.708	3352.006	3341.908	3380.29	3357.428	-	$\vartheta(N_1H_7)(75) + \vartheta(N_1H_6)(25)$
3383.007	3381.878	3374.567	3414.453	3394.246	3390	$\vartheta(N_5H_9)(72) + \vartheta(N_5H_{10})(27)$
3410.724	3410.924	3401.251	3442.331	3419.164	-	$\vartheta(N_2H_8)(99)$

3517.221	3513.758	3498.926	3535.387	3520.363	3794	$\vartheta_{(N_5H_{10})(72)} + \vartheta_{(N_5H_9)(27)}$
ϑ = stretchin	g mode, ρ= ro	cking mode, τ	= torsion mod	le, ω= waggin	g mode and δ'=	e deformation mode

Supplementa	ry Table S4. C	alculated and o	experimental FT	-IR values for T	CHZ at B3LY	P- 6311+G (d,p) basis sets.
Scaled theore	etical frequency	y			Experiment	Assignments
B3LYP	B3LYP	B3LYP	Cam-B3LYP	B3WP91		
631-G(d,p)	631-G(d', p')	6311+	6311+	6311+		
		G(d,p)	G(d,p)	G(d,p)		
					-	$\rho(H_9N_1N_2+C_3N_1N_2)(20)+$
						$\rho(S_4N_2C_3+N_5N_2C_3)(19)+\vartheta(C_3S_4)(21)+$
568.631	564.846	576.400	586.305	575.120		$\tau(H_9N_2C_3S_4)(10)$
					591	$\tau(H_9N_2C_3S_4)(61)+\omega(N_1H_9C_3N_2)(14)+$
						$\tau(H_8N_1N_2H_9)(13)$
580.675	577.051	583.614	592.771	584.210		
					673	$\omega(N_2S_4N_5C_3)(78) + \tau(H_{10}N_5N_6H_{12})(11) +$
613.216	608.367	612.048	629.554	612.687		$\omega(N_1H_9C_3N_2)(9)$
					749	$\vartheta_{(C_3S_4)(27)} + \vartheta_{(N_1N_2)(15)} + \vartheta_{(N_2C_3)(15)} + \omega_{(H_{11}H_1)}$
						$_{2}N_{5}N_{6})(10)+\rho(H_{10}N_{6}N_{5}+C_{3}N_{6}N_{5})(10)+\omega(H_{8}H_{7}N_{2})$
732.086	726.982	726.177	741.999	735.900		N_1)(6)+ ρ (S ₄ N ₂ C ₃ +N ₅ N ₂ C ₃)(5)

					-	$\omega(H_{11}H_{12}N_5N_6)(63) + \vartheta(N_5N_6)(17) +$
864.691	849.643	857.696	849.783	846.424		$\tau(H_{10}N_5N_6H_{12})(6)$
966.503	945.376	954.376	954.471	949.957	927	$\omega(H_8H_7N_2N_1)(63) + \vartheta(N_1N_2)(21)$
					1012	$\vartheta_{(N_5N_6)(55)}$ + $\vartheta_{(C_3N_5)(14)}$ + $\vartheta_{(C_3S_4)(9)}$ +
						$\rho(H_9N_1N_2+C_3N_1N_2)(7)+$ $\delta'(S_4N_5C_3+$
1050.515	1040.872	1037.228	1071.711	1062.371		$S_4N_2C_3+N_5N_2C_3$)(6)
					1127	$\vartheta(N_1N_2)(18) + \omega(H_8H_7N_2N_1)(12) +$
						$\rho(H_9N_1N_2+C_3N_1N_2)(12)+$
						$\rho(S_4N_2C_3+N_5N_2C_3)(12)+$
						$\rho(H_{10}N_6N_5+C_3N_6N_5)(12)+$ $\vartheta(C_3S_4)(9)+$
1175.179	1163.676	1163.758	1183.843	1176.561		$\delta'(H_{10}C_3N_5+H_{10}N_6N_5+C_3N_6N_5)(5)$
					-	$\vartheta(C_3N_5)(27) + \vartheta(N_1N_2)(24) + \delta'(S_4N_5C_3 + \delta'(S_4N_5C_3))$
						$S_4N_2C_3+N_5N_2C_3$)(11)+ ρ (H ₁₀ N ₆ N ₅ +C ₃ N ₆ N ₅)(6)+
1212.517	1205.032	1198.865	1229.123	1219.684		$\vartheta(N_2C_3)(8) + \vartheta(C_3S_4)(8) + \vartheta(N_5N_6)(6)$
					-	$\delta_{SC}(H_{12}N_5N_6+H_{12}H_{11}N_6+N_5H_{11}N_6)(74)+$
1240.024	1231.75	1239.521	1244.049	1237.702		$\rho(H_{12}N_{11}N_6 + N_5H_{11}N_6)(20) + \omega(H_{11}H_{12}N_5N_6)(5)$
					1272	$\delta_{SC}(H_7N_2N_1+H_7H_8N_1+N_2H_8N_1)(73)+$
1296.88	1284.741	1293.777	1296.744	1292.166		$\rho(H_{7}H_{8}N_{1}+N_{2}H_{8}N_{1})(19)+\omega(H_{8}H_{7}N_{2}N_{1})(7)$
					-	$\delta'(H_9C_3N_1+H_9N_1N_2+C_3N_1N_2)(23)+$
						$\vartheta(N_2C_3)(17) + \rho(H_9N_1N_2+C_3N_1N_2)(11) +$
1311.631	1303.729	1300.068	1322.627	1311.182		$\vartheta(C_3N_5)(23) + \rho(H_{10}N_6N_5 + C_3N_6N_5)(5)$

					1485	$\delta'(H_{10}C_3N_5+H_{10}N_6N_5+C_3N_6N_5)(51)+$
1443.248	1436.686	1437.043	1460.831	1443.514		$\rho(H_{10}N_6N_5+C_3N_6N_5)(17)+\vartheta(C_3S_4)(10)$
					1533	$\delta'(H_9C_3N_1+H_9N_1N_2+C_3N_1N_2)(36)+$
						$\vartheta(N_2C_3)(13) + \qquad \qquad \vartheta(C_3S_4)(15) +$
1468.846	1457.497	1453.436	1486.22	1468.761		$\rho(H_9N_1N_2+C_3N_1N_2)(13)+\vartheta(N_1N_2)(5)$
					1609	$\rho(H_{12}N_{11}N_6+N_5H_{11}N_6)(64)+$
1609.192	1601.102	1606.244	1612.537	1603.753		$\delta_{SC}(H_{12}N_5N_6+H_{12}H_{11}N_6+N_5H_{11}N_6)(26)$
					1636	$\rho(H_7H_8N_1+N_2H_8N_1)(65)+$
1628.701	1619.585	1626.458	1630.102	1623.187		$\delta_{SC}(H_7N_2N_1 + H_7H_8N_1 + N_2H_8N_1)(28)$
3269.503	3285.731	3266.526	3322.242	3298.045	3171	$\vartheta(N_1H_7)(51) + \vartheta(N_1H_8)(49)$
3296.203	3306.922	3285.694	3344.222	3322.864	3212	$\vartheta(\mathrm{N}_{6}\mathrm{H}_{12})(60) + \vartheta(\mathrm{N}_{6}\mathrm{H}_{11})(40)$
3331.812	3350.253	3323.623	3381.84	3358.569	3267	$\vartheta(N_1H_8)(51) + \vartheta(N_1H_7)(49)$
3385.363	3392.217	3363.338	3422.999	3403.325	-	$\vartheta(\mathrm{N}_{6}\mathrm{H}_{11})(60) + \vartheta(\mathrm{N}_{6}\mathrm{H}_{12})(40)$
3408.937	3413.978	3385.662	3442.739	3423.833	3315	$\vartheta(N_5H_{10})(99)$
3430.783	3430.41	3401.666	3450.316	3429.75	-	$\vartheta(N_2H_9)(98)$
$\vartheta = $ stretchin	g mode, <i>ρ</i> = roo	king mode, τ	= torsion mode	e, ω= wagging m	node and δ'= d	leformation mode

Supplementary Table S5. NMR for TSCZ at different basis sets.							
Theoretical							
B3LYP CAM-B3LYP B3WP91							

	6-31G (d, p)	6-31+G(d', p')	6-311+G(d, p)	6-311+G(d, p)	6-311+G(d, p)	
1N	65.6143	79.1697	84.8662	79.1378	79.8725	-
2N	135.7789	141.6387	151.3925	145.4639	146.4119	-
3 C	182.4626	188.7991	201.6306	204.5578	196.2313	184.16
4S	512.5350	500.4744	447.4701	478.3479	470.4228	-
5N	102.3049	105.7989	114.7261	112.2984	112.2595	-
6H	3.2286	3.7634	3.8946	3.7364	3.8081	3.425
7 H	3.0718	3.374	3.4991	3.4905	3.3145	3.425
8H	6.1571	6.5546	6.6096	6.5764	6.493	7.211
9H	5.1972	5.0733	5.1585	5.156	5.1002	6.956
10H	5.0932	5.3311	5.4038	5.5054	5.3487	6.956

Supplementa	ry Table S6. NMR	for TCHZ at different	t basis sets.			
		Theoretical				Observed
		B3LYP		CAM-B3LYP	B3WP91	(In ppm)
	6-31G (d, p)	6-31+G(d', p')	6-311+G(d, p)	6-311+G(d, p)	6-311+G(d, p)	
1N	66.1186	71.0119	79.0921	72.4595	71.4214	-
2N	134.9267	138.6477	145.5627	143.998	143.3943	-
3 C	182.4447	184.0560	196.3457	201.2413	191.5341	181.87
48	560.0569	558.0082	437.1710	527.7217	531.5622	-
5N	128.03822	133.2937	132.1572	137.4981	137.7152	_

6N	61.3822	65.9055	70.2534	66.8583	67.7024	-
7 H	3.3234	3.3976	3.3862	3.4767	3.3481	4.487
8H	3.3120	3.4007	3.3809	3.4753	3.3469	4.487
9Н	8.0240	7.9121	7.6091	7.9674	7.8841	8.709
10H	6.4902	6.4641	6.2829	6.5717	6.5071	8.709
11H	3.3634	3.4774	3.1815	3.4982	3.3481	4.487
12H	3.3237	3.4415	3.1425	3.4982	3.4165	4.487

Supplementary Ta	Supplementary Table S7. NBO calculation of TSCZ using TD/DFT B3LYP 631G(d, p) basis set.							
	Donor	(i)		Accept	or (j)	$E_{(2)}$ (kJ/mol)		
orbital / lp (occupancy)	ED _{A,} % ED _B ,%	NBO hybrid Orbitals	Orbital (occupancy)	ED _{A,} % ED _{B,} %	NBO hybrid Orbitals			
σ (C3 - S 4) 1.9935	26.78 73.22	0.5175 (sp ^{99.99} d ^{3.25})C3 0.8557 (sp ^{99.99} d ^{9.89})S4	σ *(C3-S4) 0.0132	39.99 60.01	0.6324(sp ^{1.62})C3 -0.7747(sp ^{4.46})S4	6.82		
Lp1(N1) 1.9579		(sp ^{4.29})N1	σ *(N2-C3) 0.06780	39.14 60.86	0.6256(sp ^{1.52})N2 -0.7801(sp ^{2.25})C3	8.97		
Lp1(N2) 1.7196		(sp ^{0.21})N2	σ *(N1-H7) 0.0680	30.15 69.85	0.5491(sp ^{2.62})N1 -0.8358(sp ^{0.00})H7	5.01		
Lp1(N2) 1.7196		(sp ^{0.21})S4	σ *(C3-S4) 0.0132	39.99 60.01	0.6324(sp ^{1.62})C3 -0.7747(sp ^{4.46})S4	68.54		
lp2(84) 1.8782		(sp ¹)S4	σ *(N2-C3) 0.0680	39.14 60.86	0.6256(sp ^{1.52})N2 -0.7801(sp ^{2.25})C3	10.76		
lp2 (S4) 1.8782		(sp1)S4	σ *(C3-N5) 0.0509	60.55 39.45	0.7781(sp ^{2.22})C3 -0.6281(sp ^{1.63})N5	10.52		

lp1 (N5) 1.7565	(sp ^{20.76})N5	σ *(C3-S4) 0.0132	39.99 60.01	0.6324(sp ^{1.62})C3 -0.7747(sp ^{4.46})S4	60.68

Supplementary Ta	Supplementary Table S8. NBO calculation of TSCZ using TD/DFT B3LYP 631G(d', p') basis set.							
	Dono	r (i)		E ₍₂₎ (kJ/mol)				
orbital / lp (occupancy)	ED _{A,} % ED _B ,%	NBO hybrid Orbitals	Orbital (occupancy)	ED _{A,} % ED _{B,} %	NBO hybrid Orbitals			
σ (C3-S4) 1.9828	28.85 71.15	$\begin{array}{c} 0.5371({\rm sp}^{99.99}{\rm d}^{0.37}){\rm C3}\\ 0.8435({\rm sp}^{99.53}{\rm d}^{0.98}){\rm S4} \end{array}$	σ * (C3-S4) 0.4677	71.15 28.85	$\begin{array}{c} 0.8435(sp^{99.99}d^{0.37})C3\\ -0.5371(sp^{99.99}d^{0.98})S4 \end{array}$	5.76		
lp1(N1) 1.9621		(sp ^{3.43})N1	σ * (N2-C3) 0.0739	39.02 60.98	0.6246(sp ^{1.58})N2 -0.7809(sp ^{2.30})C3	7.89		
lp1(N2) 1.7289		(sp ^{27.70} d ^{0.01})N2	σ * (C3-S4) 0.4677	71.15 28.85	0.8435(sp ^{99.99} d ^{0.37})C3 -0.5371(sp ^{99.99} d ^{0.98})S4	56.88		
lp2(S4) 1.8799		(sp1)S4	σ * (N2-C3) 0.0739	39.02 60.98	0.6246(sp ^{1.58})N2 -0.7809(sp ^{2.30})C3	11.96		
lp2(S4) 1.8799		(sp1)S4	σ * (C3-N5) 0.0502	59.90 40.10	0.7740(sp ^{2.18})C3 -0.6332(sp ^{1.72})N5	10.59		
lp1(N5) 1.7771		(sp ^{15.82})N5	σ * (C3-S4) 0.4677	71.15 28.85	0.8435(sp ^{99.99} d ^{0.37})C3 -0.5371(sp ^{99.99} d ^{0.98})S4	54.36		

Supplementary Table S9. NBO of TSCZ using TD/DFT B3LYP 6-311+G (d, p) basis set.					
Donor (i)	Acceptor (j)	$E_{(2)}$			

orbital / lp (occupancy)	ED _A , % ED _B ,%	NBO hybrid Orbitals	Orbital (occupancy)	ED _A , % ED _B , %	NBO hybrid Orbitals	(kJ/mol)
σ (C3-S4) 1.9823	29.07 70.93	0.5392(sp ^{99.99} d ^{0.40})C3 0.8422(sp ^{99.99} d ^{1.11})S4	σ* (C3-S4) 0.4667	70.93 29.07	0.8422(sp ^{99,99}) -0.5392(sp ^{99,99} d ^{1.11})S4	5.52
σ (N5-H9) 1.9822	69.43 30.57	0.8333(sp ^{2.62})N5 0.5529(sp ^{0.00})H9	π* (C3-S4) 0.02771	41.40 58.60	0.6434(sp ^{1.66})C3 -0.7655(sp ^{4.47} d ^{0.03})S4	5.47
lp1 (N1) 1.9624	-	(sp ^{3.22})N1	σ* (N2-C3) 0.0744	38.78 61.22	0.6227(sp ^{1.52})N2 -0.7824(sp ^{2.27})C3	8.33
lp1 (N2) 1.7292	-	(sp ^{28.12})N2	σ* (C3-S4) 0.4667	70.93 29.07	0.8422(sp ^{99.99}) -0.5392(sp ^{99.99} d ^{1.11})S4	58.27
lp2(S4) 1.8834	-	(sp ^{0.22})S4	σ* (N2-C3) 0.0744	38.78 61.22	0.6227(sp ^{1.52})N2 -0.7824(sp ^{2.27})C3	12.73
lp2(S4) 1.8834	-	(sp ^{0.22})S4	σ* (C3-N5) 0.0515	60.22 39.78	0.7760(sp ^{2.19})C3 -0.6307(sp ^{1.60})N5	11.56
lp1(N5) 1.7769	-	(sp ^{16.14})N5	σ* (C3-S4) 0.4667	70.93 29.07	0.8422(sp ^{99.99}) -0.5392(sp ^{99.99} d ^{1.11})S4	54.81

Supplementary Table S10. NBO of TSCZ using TD/DFT CAM- B3LYP 6-311+G (d, p) basis set.						
Donor (i)				Accep	tor (j)	$E_{(2)}$
orbital / lp	ED _A , %	NBO hybrid	Orbital	ED _A , %	NBO hybrid	(kJ/mol)
(occupancy)	ED _B ,%	Orbitals	(occupancy)	ED _B , %	Orbitals	
σ (N5-H9)	69.60	0.8343(sp ^{2.52})N5	π* (C3-S4)	40.98	0.6402(sp ^{1.63})C3	5.48
1.9843	30.40	0.5514(sp ^{0.00})H9	0.0193	59.02	-0.7682(sp ^{4.19} d ^{0.03})S4	

lp1 (N1) 1.9651	-	(sp ^{3.55})N1	σ* (N2-C3) 0.06992	38.57 61.43	0.6210(sp ^{1.47})N2 -0.7838(sp ^{2.27})C3	9.33
lp1 (N2) 1.7321	-	(sp ^{60.48} d ^{0.01})N2	σ* (N1-H6) 0.0152	31.18 68.82	0.5584(sp ^{2.76})N1 -0.8296(sp ^{0.00})H6	5.37
lp1 (N2) 1.7321	-	(sp ^{60.48} d ^{0.01})N2	σ* (N1-H7) 0.0121	31.55 68.45	0.5617(sp ^{2.85})N1 -0.8274 (sp ^{0.00})H7	5.21
lp1 (N2) 1.7321	-	(sp ^{60.48} d ^{0.01})N2	σ* (C3-S4) 0.4609	72.73 27.27	$\begin{array}{c} 0.8528({\rm sp}^{99.99}{\rm d}^{1.44}) \\ \text{-}0.5222({\rm sp}^{99.99}{\rm d}^{3.61}){\rm S4} \end{array}$	83.13
lp2(S4) 1.8907	-	(sp ¹)S4	σ* (N2-C3) 0.0699	38.57 61.43	0.6210(sp ^{1.47})N2 -0.7838(sp ^{2.27})C3	15.14
lp2(S4) 1.8907	-	(sp ¹)S4	σ* (C3-N5) 0.0479	60.42 39.58	0.7773(sp ^{2.18})C3 -0.6292(sp ^{1.54})N5	13.68
lp1(N5) 1.7777	-	(sp ^{27.96} d ^{0.01})N5	σ* (C3-S4) 0.4609	72.73 27.27	$\begin{array}{c} 0.8528({\rm sp}^{99.99}{\rm d}^{1.44})\\ \text{-}0.5222({\rm sp}^{99.99}{\rm d}^{3.61}){\rm S4}\end{array}$	74.17

Supplementary Ta	Supplementary Table S11. NBO calculation of TCHZ using TD/DFT B3LYP 631G (d, p) basis set.							
Donor (i)			Acceptor (j)			<i>E</i> ₍₂₎ (kJ/mol)		
orbital / lp (occupancy)	ED _{A,} % ED _B ,%	NBO hybrid Orbitals	Orbital (occupancy)	ED _{A,} % ED _{B,} %	NBO hybrid Orbitals			
lp1(N1) 1.9701		(sp ^{3.10})N1	σ * (N2-C3) 0.0645	39.50 60.50	0.6285(sp ^{1.58})N2 -0.7778(sp ^{2.14})C3	8.72		

lp2(84) 1.9009	(sp ^{99.99} d ^{2.65})S4	σ * (N2-C3) 0.0645	39.50 60.50	0.6285(sp ^{1.58})N2 -0.7778(sp ^{2.14})C3	10.46
lp2(84) 1.9009	(sp ^{99.99} d ^{2.65})S4	σ * (C3-N5) 0.0544	60.23 39.77	0.7761(sp ^{2.19})C3 -0.6306(sp ^{1.63})N5	9.29
lp3(S4) 1.7005	(sp ¹)S4	π^* (N2-C3) 0.5688	22.45 77.55	0.4738(sp ^{99.99} d ^{0.26})N2 -0.8806(sp ^{99.99} d ^{4.61})C3	60.59
lp1(N5) 1.7093	(sp ^{49.05} d ^{0.01})N5	π* (N2-C3) 0.5688	22.45 77.55	0.4738(sp ^{99.99} d ^{0.26})N2 -0.8806(sp ^{99.99} d ^{4.61})C3	68.80

Supplementary Ta	Supplementary Table S12. NBO calculation of TCHZ using TD/DFT B3LYP 631G(d', p') basis set						
Donor (i)			Acceptor (j)			E ₍₂₎ (kJ/mol)	
orbital / lp (occupancy)	ED _{A,} % ED _B ,%	NBO hybrid Orbitals	Orbital (occupancy)	ED _{A,} % ED _{B,} %	NBO hybrid Orbitals		
σ (N2-H9) 1.9815	73.51 26.49	0.8574(sp ^{2.18})N2 0.4738(sp ^{0.00})H9	π* (C3-S4) 0.0186	40.22 59.78	0.6342(sp ^{1.64})C3 -0.7732(sp ^{4.68} d ^{0.04})S4	5.35	
σ (C3-S4) 1.9879	26.32 73.68	$\begin{array}{c} 0.5130(sp^{99.99}d^{0.74})\text{C3}\\ 0.8584(sp^{99.99}d^{1.44})\text{S4} \end{array}$	σ * (C3-S4) 0.5138	73.68 26.32	$\begin{array}{c} 0.8584(sp^{99.99}d^{0.74})C3\\ -0.5130(sp^{99.99}d^{1.44})S4 \end{array}$	6.62	
lp1(N1) 1.6981		(sp ^{3.39})N1	σ * (N2-C3) 0.0711	39.13 60.87	0.6256(sp ^{1.59})N2 -0.7802(sp ^{2.20})C3	8.49	
lp1(N2) 1.6922		(sp ^{99.99} d ^{0.23})N2	σ * (C3-S4) 0.5138	73.68 26.32	0.8584(sp ^{99.99} d ^{0.74})C3 -0.5130(sp ^{99.99} d ^{1.44})S4	78.89	
lp2(S4) 1.8744		(sp ^{99.99} d ^{2.17})S4	σ * (N2-C3) 0.0711	39.13 60.87	0.6256(sp ^{1.59})N2 -0.7802(sp ^{2.20})C3	11.79	

lp2(S4) 1.8744	(sp ^{99.99} d ^{2.17})S4	σ * (C3-N5) 0.0617	61.17 38.83	0.7821(sp ^{2.27})C3 -0.6231(sp ^{1.57})N5	10.44
lp1(N5) 1.7464	(sp ¹)N5	σ * (C3-S4) 0.5138	73.68 26.32	0.8584(sp ^{99.99} d ^{0.74})C3 -0.5130(sp ^{99.99} d ^{1.44})S4	63.13
lp1(N6) 1.9552	(sp ^{4.21})N6	σ * (N5-H10) 0.0292	27.22 72.78	0.5218(sp ^{2.14})N5 -0.8531(sp ^{0.00})H10	7.60

Supplementary Ta	able S13. NB	O of TCHZ using TD/DFT	B3LYP 6-311+G (d	l, p) basis se	t.			
	Donor ((i)		Acceptor (j)				
orbital / lp (occupancy)	ED _{A,} % ED _B ,%	NBO hybrid Orbitals	OrbitalEDA, %(occupancy)EDB, %		NBO hybrid Orbitals	(kJ/mol)		
σ (N2-H9) 1.9815	71.45 28.55	0.8453(sp ^{2.34})N2 0.5343(sp ^{0.00})H1	π* (C3-S4) 0.0182	41.03 58.97	0.6405(sp ^{1.66})C3 -0.7679(sp ^{4.40} d ^{0.03})S4	5.43		
σ (C3-S4) 1.9880	26.65 73.35	0.5162(sp ^{99.99} d ^{0.84})C3 0.8565(sp ^{99.99} d ^{1.61})S4	σ* (C3-S4) 0.5091	73.35 26.65	0.8565(sp ^{99.99} d ^{0.84})C3 -0.5162(sp ^{99.99} d ^{1.61})S4	6.47		
lp1(N1) 1.9667	-	(sp ^{3.18})N1	σ* (N2-C3) 0.0694	38.67 61.33	0.6218(sp ^{1.50})N2 -0.7832(sp ^{2.17})C3	8.58		
lp1(N2) 1.6913	-	(sp ^{0.22})N2	σ* (C3-S4) 0.5091	73.35 26.65	0.8565(sp ^{99.99} d ^{0.84})C3 -0.5162(sp ^{99.99} d ^{1.61})S4	79.74		
lp2(S4) 1.8780	-	(sp ^{99.99} d ^{2.67})S4	σ* (N2-C3) 0.0694	38.67 61.33	0.6218(sp ^{1.50})N2 -0.7832(sp ^{2.17})C3	12.34		
lp2(S4) 1.8780	-	(sp ^{99.99} d ^{2.67})S4	σ* (C3-N5) 0.0596	61.58 38.42	0.7847(sp ^{2.26})C3 -0.6199(sp ^{1.49})N5	11.24		

lp1(N5)	-	(sp ^{99.99} d ^{0.01})N5	σ* (C3-S4)	73.35	$0.8565(sp^{99.99}d^{0.84})C3$	62.63
1./4/3			0.3091	20.03	-0.5102(sp>>>d***)54	
lp1(N5)	-	(sp ^{99.99} d ^{0.01})N5	σ* (N6-H12)	31.60	$0.5621(sp^{2.71})N6$	5.16
1./4/5			0.0141	68.40	$-0.82/0(sp^{0.00})H12$	
lp1(N6)	-	(sp ^{3.99})N6	σ* (N5-H10)	29.41	0.5423(sp ^{2.33})N5	7.30
1.9586			0.0289	70.59	-0.8402(sp ^{0.00})H10	

Supplementary Ta	ble S14. NB	O of TCHZ using TD/DFT	CAM-B3LYP 6-31	1+G (d, p) b	asis set.	
	Donor ((i)		Acce	otor (j)	$E_{(2)}$
orbital / lp	ED _A ,%	NBO hybrid	Orbital	ED _A , %	NBO hybrid	(kJ/mol)
(occupancy)	ED _B ,%	Orbitals	(occupancy)	ED _{B,} %	Orbitals	
σ (N2-H9)	71.59	0.8461(sp ^{2.34})N2	σ* (C3-S4)	40.63	0.6374(sp ^{1.63})C3	5.82
1.9819	28.41	0.5330(sp ^{0.00})H1	0.0133	59.37	-0.7705(sp ^{4.21} d ^{0.03})S4	
σ (C3-S4)	59.37	0.7705(sp ^{1.63})C3	σ* (N5-N6)	47.68	0.6905(sp ^{2.38})N5	5.31
1.9774	40.63	0.6374(sp ^{4.21} d ^{0.03})S4	0.0209	52.32	-0.7233(sp ^{2.72})N6	
lp2(S4)	-	(sp ^{99.99} d ^{1.79})S4	σ* (N2-C3)	38.75	0.6225(sp ^{1.50})N2	15.04
1.8863			0.0666	61.25	-0.7826(sp ^{2.18})C3	
lp2(S4)	-	$(sp^{99.99}d^{1.79})S4$	σ* (C3-N5)	61.53	0.7844(sp ^{2.26})C3	13.54
1.8863			0.0572	38.47	-0.6203(sp ^{1.49})N5	
lp3(S4)	-	(sp ¹)S4	π* (N2-C3)	20.13	0.4487(sp ¹)N2	114.01
1.6128			0.5942	79.87	-0.8937(sp1)C3	
lp1(N5)	-	(sp ¹)N5	π* (N2-C3)	20.13	0.4487(sp1)N2	81.11
1.7536			0.5942	79.87	-0.8937(sp1)C3	

lp1(N5) 1.7536	-	(sp ¹)N5	σ* (N6-H11) 0.0128	31.36 68.64	0.5600(sp ^{2.64})N6 -0.8285(sp ^{0.00})H11	5.91
lp1(N5) 1.7536	-	(sp ¹)N5	σ* (N6-H12) 0.0128	31.36 68.64	0.5600(sp ^{2.64})N6 -0.8285(sp ^{0.00})H12	5.91
.lp1(N6) 1.9600	-	(sp ^{4.46})N6	σ* (N5-H10) 0.0273	29.24 70.76	0.5408(sp ^{2.30})N5 -0.8412(sp ^{0.00})H10	8.71

Supplementary Table S15. Local electronic descriptors (Fukui function, local softness and local electrophilicity) calculated at different functionals.

	B3LYP 6-311+G(d, p)										
	TSCZ										
Atom	f_k^+	f_k	S_k^+	S_k	ω_k +	ω _k -					
1 N	0.0309	-0.2029	0.0168	-0.1102	0.1175	-0.7711					
2 N	-0.1063	0.0068	-0.0577	0.0036	-0.4038	0.0258					
3 C	-0.4039	-0.2436	-0.2195	-0.1323	-1.53505	-0.9255					
4 S	-0.4048	-0.4896	-0.2200	-0.2661	-1.5384	-1.8605					
5 N	-0.1159	-0.0707	-0.0629	-0.0384	-0.4404	-0.268					
	TCHZ										
1 N	0.1114	-0.1964	0.0626	-0.1104	0.4025	-0.7092					
2 N	-0.0407	0.0144	-0.0228	0.0081	-0.1470	0.0519					

3 C	0.4704	0.1085	0.2645	0.1116	1 6001	0.7160				
3 C	-0.4/04	-0.1985	-0.2043	-0.1110	-1.0991	-0.7109				
4 S	-0.6823	-0.5012	-0.3836	-0.2817	-2.4643	-1.8102				
5 N	0.0576	-0.0221	0.0324	-0.0124	0.20819	-0.0799				
6 N	0.0244	-0.0962	0.0137	-0.0541	0.08811	-0.3473				
	·	CAN	I -B3LYP 6-311+G	(d, p)	·					
			TSCZ							
1 N	0.0309	-0.2029	0.0168	-0.1102	0.1175	-0.7711				
2 N	-0.1063	0.0068	-0.0577	0.0036	-0.4038	0.0258				
3 C	-0.4039	-0.2436	-0.2195	-0.1323	-1.53505	-0.9255				
4 S	-0.4048	-0.4896	-0.2200	-0.2661	-1.5384	-1.8605				
5 N	-0.1159	-0.0707	-0.0629	-0.0384	-0.4404	-0.268				
		·	ТСНΖ	-	-					
1 N	0.1114	-0.1964	0.0626	-0.1104	0.4025	-0.7092				
2 N	-0.0407	0.0144	-0.0228	0.0081	-0.1470	0.0519				
3 C	-0.4704	-0.1985	-0.2645	-0.1116	-1.6991	-0.7169				
4 S	-0.6823	-0.5012	-0.3836	-0.2817	-2.4643	-1.8102				
5 N	0.0576	-0.0221	0.0324	-0.0124	0.20819	-0.0799				
6 N	0.0244	-0.0962	0.0137	-0.0541	0.08811	-0.3473				
B3WP91 6-311+G(d, p)										
	TSCZ									
1 N	0.1005	-0.2460	0.0278	-0.0682	0.1144	-0.2804				

2 N	0.0721	-0.5730	0.0199	-0.1587	0.0820	-0.6521
3 C	0.1559	-0.3241	0.0432	-0.0898	0.1774	-0.3688
4 S	0.5626	3.1587	0.1558	0.8749	0.6402	3.5946
5 N	0.1089	-1.0152	0.0301	-0.2812	0.1239	-1.1553
			TCHZ			
1 N	0.0622	-0.1023	0.0205	-0.0337	0.1196	-0.1967
2 N	0.0508	-0.4557	0.0167	-0.1504	0.0978	-0.8763
3 C	0.2100	-0.6988	0.0693	-0.2306	0.4039	-1.3439
4 S	0.5533	3.0937	0.1826	1.0209	1.0640	5.9495
5 N	0.0236	-0.8232	0.0078	-0.2717	0.0453	-1.5831
6 N	0.1001	-0.0137	0.0330	-0.0045	0.1925	-0.0264

Supple	mentary Ta	able S16. Lo	ocal reacti	vity at diff	ferent basi	s sets.						
		S_k^+		S _k -		ω+			ω-			
	631G(d,	631+G(d'	6311+G	631G(d,	631+G(6311+G	631G(d,	631+G(6311+G(631G(d	631+G(6311+G
	p)	,p')	(d,p)	p)	d'',p')	(d,p)	p)	d',p')	d,p)	,p)	d',p')	(d,p)
TSC	-0.0958	0.0608	0.0168	-0.0848	-0.0942	-0.1102	-0.5798	0.4191	0.1175	-0.5134	-0.6488	-0.7711
Z												
	-0.0511	-0.1132	-	-0.0414	-0.0181	0.0036	-0.3097	-0.7798	-0.4038	-0.2508	-0.1248	0.0258
			0.05775									
	-0.1337	-0.2143	-0.2195	-0.0399	-0.0815	-0.1323	-0.8094	-1.4761	-1.53505	-0.2418	-0.5615	-0.9255
	-0.1947	-0.2122	-0.22	-0.3252	-0.3024	-0.2661	-1.1787	-1.4620	-1.5384	-1.9678	-2.0828	-1.8605
	-0.0943	-0.0681	-0.0629	0.0785	-0.0509	-0.0384	-0.5711	-0.469	-0.4404	0.4750	-0.3503	-0.268

TCH Z	-0.0943	0.1728	0.0626	-0.0778	-0.1264	-0.1104	-0.6883	1.1012	0.4025	-0.5683	-0.8056	-0.7092
	0.0275	-0.1636	-0.0228	-0.0385	0.0190	0.0081	0 2740	-1.0424	-0.1470	-0.2807	0.1213	0.0519
	-0.03/5	0.0(0)	0.0645	0.0010	0.0500	0.1116	-0.2/40	1 5005	1 (001	0.0050	0.0515	0.51.60
		-0.2669	-0.2645	-0.0312	-0.0583	-0.1116		-1.7005	-1.6991	-0.2278	-0.3717	-0.7169
	-0.1436						-1.0480					
		-0.3588	-0.3836	-0.3201	-0.3135	-0.2817		-2.2864	-2.4643	-2.3357	-1.9974	-1.8102
	-0.1509						-1.1016					
		-0.0841	0.0324	-0.0285	-0.0203	-0.0124		-0.5363	0.20819	-0.2079	-0.1295	-0.0799
	-0.0315						-0.2302					
		0.1326	0.0137	-0.0499	-0.0684	-0.0541	-0.6427	0.8453	0.08811	-0.3645	-0.4361	-0.3473
	-0.0880											

Supplementary Table S17. Details of molecular docking results: the summary of binding affinities (kcal/mol) and the H-bond as hydrophobic interactions.

Compound Name	Protein id	Residues involved in Hydrogen Bond interactions	Residues involved in Hydrophobic interaction	No. of Bonds H- Hydrophobic Bond Bonds	Inhibition Bi Constant E Ki (uM) (kca	inding nergy (ΔG) I/mol)
TSCZ	6CLU	Asp78 (A) N2O 2.94 (Å) Asp78 (A) N1O 2.83 (Å)	Asp78 (A), Asp42 (A)	4 2	3.81	-3.30

		Ala41(A) N3O 2.75 (Å) Met37(A) N3O 2.78 (Å)					
	2WJE	$\begin{array}{c} Glu108 (A) \\ N3OE2 \\ \textbf{2.58 (Å)} \\ His7 (A) \\ N2NE2 \\ \textbf{2.70 (Å)} \\ Glu80 (A) \\ N2OE2 \\ \textbf{2.78 (Å)} \\ Asp199 (A) \\ N1OD2 \\ \textbf{3.06 (Å)} \\ Arg206 (A) \\ \end{array}$	His42 (A), His5 (A), Asp199 (A), Glu80 (A), Glu108 (A).	5	5	3.28	-3.39
		3.16 (Å)					
тснz	6CLU	Met37 (A) N1O 2.60 (Å) Ala41 (A) N4O 2.56 (Å) Asp78 (A)	Asp78 (A).	4	1	7.57	-2.89

	N3O 2.83 (Å) Asp78 (A) N3O 3.22 (Å)					
2WJE	Glu108 (A) N1OC2 3.14 (Å) Asp199 (A) N1OD2 3.25 (Å) Asp199 (A) N4OD2 2.45 (Å) Arg139 (A) N4NB1 2.85 (Å)	His5 (A), Asp199 (A), Glu80 (A), Glu108 (A).	4	4	2.39	-3.58

Supplementary Table S18. Molecular properties of the molecules under study of physicochemical properties of TSCZ and TCHZ			
Properties	TSCZ	TCHZ	
Formula	CH5N3S	CH6N4S	
Molecular weight	91.14 g/mol	106.15 g/mol	
Log P _{o/w} (iLOGP)	0.43	0.14	
Num. heavy atoms	5	6	
Num. arom. heavy atoms	0	0	

Fraction Csp3	0.00	0.00
Num. rotatable bonds	1	2
Num. H-bond acceptors	1	2
Num. H-bond donors	3	4
Molar Refractivity	22.93	25.73
TPSA	96.16 Å ²	108.19 Ų
Lipinski	Yes; 0 violation	Yes; 0 violation
Bioavailability Score	0.55	0.55
PAINS	0 alert	0 alert
Brenk	2 alerts: hydrazine, thiocarbonyl_group	2 alerts: hydrazine, thiocarbonyl_group
Leadlikeness	No; 1 violation: MW<250	No; 1 violation: MW<250
Synthetic accessibility	2.12	2.28