Sulfur-Arene Interactions: The S $\cdots \pi$ and S-H $\cdots \pi$ Interactions in the Dimers of Benzofuran \cdots Sulfur Dioxide and Benzofuran \cdots Hydrogen Sulfide

ELECTRONIC SUPPORTING INFORMATION

Yan Jin,^{a,b} Wenqin Li,^b Rizalina Tama Saragi,^{b,c} Marcos Juanes,^{b,c} Cristóbal Pérez,^b Alberto Lesarri^b* and Gang Feng^a*

^aSchool of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China

^bDepartamento de Química Física y Química Inorgánica, Facultad de Ciencias, – I.U. CINQUIMA, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain

^cPresent address: Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck,

Technikerstrasse 25/4.OG, 6020 Innsbruck, Austria

Figure S1. Rotatable 3D figure of the global minimum of the dimer benzofuran…sulfur dioxide according to the B2PLYP-D3(BJ)/def2-TZVP calculations of Table 1.

Figure S2. Rotatable 3D figure of the global minimum of the dimer benzofuran…hydrogen sulfide according to the B2PLYP-D3(BJ)/def2-TZVP calculations of Table 2.

Figure S3. Microwave spectrum of the dimer benzofuran…sulfur dioxide (1 M averages were collected for the time-domain spectrum, followed by a Fourier transformation with a Kaiser-Bessel window).

Figure S4. Microwave spectrum of the dimer benzofuran…hydrogen sulfide (1 M averages were collected for the time-domain spectrum, followed by a Fourier transformation with a Kaiser-Bessel window).

Figure S5. A comparison between the two most stable structures of the dimer benzofuran…sulfur dioxide (upper panel: isomer I, lower panel: isomer II), showing the electric dipole moment components in the principal inertial axes (blue, yellow, red and grey vectors represent respectively μ_a , μ_b , μ_c and μ_{Total}). The absence of μ_c transitions in the spectrum confirmed the assignment of isomer I.

Table S1. Theoretical spectroscopic parameters of the first four stable isomers of the benzofuran…sulfur dioxide dimer using the B3LYP-D3(BJ) method and the def2–TZVP, jun-cc-pVTZ and cc-pVTZ basis sets.

						B3LYP-D3(BJ)						
		def2-TZVP				jun-cc-pVTZ				cc-pVTZ		
	I	II		IV	I	II		IV	I	II	III	IV
A / MHz ^a	1074.3[1.7%] ^c	1062.9[0.6%]	1260.1	1365	1069.9[1.3%]	1062.6[0.6%]	1249.1	1373.9	1073.1[1.6%]	1062.1[0.6%]	1254.5	1360.9
<i>B</i> / MHz	833.4[2.6%]	839.4[3.4%]	664.4	598	829.4[2.1%]	833.1[2.6%]	668.8	589.0	833.4[2.6%]	839.4[3.4%]	665.8	597.8
C / MHz	659.1[2.6%]	639.6[-0.4%]	554.7	529	652.8[1.6%]	636.5[-0.9%]	548.9	519.6	659.5[2.7%]	636.2[-0.9%]	553.5	528.3
<i>D</i> , / kHz	0.47	0.25	0.55	0.40	0.42	0.27	1.3	0.40	0.49	0.25	0.52	0.38
<i>D_{JK}</i> / kHz	-0.17	2.6	-2.0	-1.3	0.38	2.3	-5.2	-1.3	-0.18	2.8	-1.9	-1.2
D _κ / kHz	-0.14	-2.6	3.1	3.2	-0.62	-2.4	7.1	3.3	-0.15	-2.8	2.9	3.0
<i>δ</i> 」 / kHz	0.003	-0.06	0.19	0.07	-0.004	-0.05	0.52	0.06	0.01	-0.07	0.18	0.06
δ _κ / kHz	0.44	3.7	0.82	0.63	1.0	3.3	1.4	0.61	0.48	4.1	0.67	0.58
$ \mu_{a} $ / D	1.8	2.1	2.4	2.2	2.0	2.3	2.5	2.4	1.8	2.1	2.5	2.3
$ \mu_{ m b} $ / D	0.8	0.6	0.3	0.4	0.8	0.6	0.5	0.5	0.8	0.6	0.4	0.4
$ \mu_{c} $ / D	0.2	1.4	0.0	0.1	0.2	1.4	0.0	0.1	0.1	1.5	0.0	0.1
ΔE / kJ mol ^{-1 b}	0.0	2.3	2.4	5.2	0.0	2.0	2.1	4.9	0.0	2.1	2.2	5.0
ΔE_0 / kJ mol ⁻¹	0.0	1.9	2.0	4.7	0.0	1.7	1.8	4.5	0.0	1.8	1.9	4.6
⊿G / kJ mol⁻¹	1.5	1.2	0.0	2.4	3.1	3.2	0.0	4.0	1.4	1.1	0.0	2.6
$\Delta E_c / \text{kJ mol}^{-1}$	-25.77	-23.56	-23.77	-21.05	-25.73	-23.64	-23.68	-20.96	-25.36	-23.18	-23.43	-20.71

^aRotational constants (*A*, *B*, *C*), Watson's A-reduction centrifugal distortion constants (D_J , D_{JK} , D_K , d_J , d_K) and electric dipole moments (μ_{α} , $\alpha = a$, b, c). ^bRelative energies uncorrected (ΔE) and corrected with the zero-point energy (ΔE_0), Gibbs energy (ΔG , 298 K, 1 atm) and complexation energy (ΔE_c , including BSSE corrections). ^cRelative deviations respect to the experimental values in Table 1 in square brackets, defined as (theory-experiment)/experiment.

Table S2. Theoretical spectroscopic parameters of the first four stable isomers of the benzofuran…sulfur dioxide dimer using the B2PLYP-D3(BJ) method and the def2–TZVP, jun-cc-pVTZ and cc-pVTZ basis sets.

					B2PLYP-D	03(BJ)					
		def2-TZVP			jun-cc-pVTZ				cc-pVTZ		
	I	II	III	I	II	III	IV	I	II	III	IV
A / MHz ^a	1070.1[1.3%]	1066.0[0.9%]	1244.1	1065.3[0.9%]	1060.2[0.4%]	1243.0	1300.2	1068.1[1.1%]	1067.0[1.0%]	1239.8	1301.2
<i>B</i> / MHz	830.5[2.3%]	830.1[2.2%]	666.0	828.9[2.1%]	829.6[2.2%]	660.2	615.0	829.5[2.2%]	827.6[1.9%]	665.4	617.1
C / MHz	658.9[2.6%]	629.4[-2.0%]	559.1	653.8[1.8%]	631.4[-1.7%]	552.8	540.8	658.8[2.6%]	625.3[-2.6%]	557.1	545.3
<i>D</i> , / kHz	0.53	0.62	0.53	0.46	0.30	0.73	0.65	0.57	0.73	0.47	0.55
<i>D_{JK}</i> / kHz	-0.16	2.0	-1.9	0.41	3.0	-2.7	-2.4	-0.18	1.3	-1.6	-2.0
D _κ / kHz	-0.19	-2.3	2.9	-0.67	-3.0	3.8	6.2	-0.21	1.7	2.5	4.8
<i>δ</i> 」 / kHz	0.003	-0.04	0.18	-0.007	-0.008	0.27	0.15	0.01	-0.04	0.15	0.13
δ _κ / kHz	0.54	3.7	0.90	1.1	4.2	1.4	0.008	0.61	2.9	0.63	0.67
µ₃ / D	1.5	1.8	2.2	1.7	2.0	2.3	2.0	1.5	1.8	2.3	1.9
$ \mu_{\rm b} $ / D	0.8	0.7	0.2	0.8	0.7	0.3	0.3	0.8	0.7	0.2	0.3
$ \mu_{\rm c} $ / D	0.1	1.5	0.1	0.1	1.5	0.0	0.1	0.1	1.5	0.1	0.0
∆E / kJ mol⁻¹	0.0	1.9	0.2	0.1	1.7	0.0	2.2	0.0	1.7	0.1	2.4
ΔE_0 / kJ mol ⁻¹	0.0	1.7	2.1	0.0	1.6	2.0	4.6	0.0	1.6	1.9	4.5
⊿G / kJ mol⁻¹	1.5	0.3	0.0	2.2	1.7	0.0	1.3	1.0	0.1	0.0	0.9
$\Delta E_c / kJ mol^{-1}$	-21.30	-19.25	-19.41	-22.22	-20.33	-20.17	-17.32	-20.54	-18.58	-18.83	-16.11

^aParameter definition as in Table S1.

			B3LYP-[D3(BJ)		
	def2-1	ZVP	jun-cc	-pVTZ	сс-р	VTZ
Parameters	I	II	I	11	I	11
A / MHz ^a	1169.9[-0.3%] ^b	1207.1[2.8%]	1171.3[-0.2%]	1202.7[2.5%]	1170.6[-0.3%]	1212.7[3.3%]
<i>B</i> / MHz	1086.6[4.7%]	1105.6[6.6%]	1076.6[3.8%]	1104.7[6.5%]	1082.6[4.3%]	1090.7[5.1%]
C / MHz	787.6[3.1%]	811.8[6.3%]	783.0[2.5%]	809.1[5.9%]	786.0[2.9%]	806.5[5.6%]
<i>D</i> , / kHz	2.0	2.4	2.1	2.5	2.2	2.9
<i>D_{JK} /</i> kHz	-3.6	-6.5	-4.0	-7.0	-4.5	-8.7
<i>D</i> _κ / kHz	1.9	4.5	2.2	5.0	2.5	6.2
$\delta_{ m J}$ / kHz	-0.14	-0.23	-0.13	-0.24	-0.13	-0.34
δ _κ / kHz	-3.0	-10.6	-3.6	-12.2	-4.8	-12.3
µ₁ / D	1.4	0.2	1.4	0.1	1.5	0.1
$ \mu_{ m b} /D$	0.1	0.5	0.0	0.5	0.0	0.5
$ \mu_{\rm c} $ / D	0.9	0.3	0.9	0.3	0.9	0.2
ΔE / kJ mol⁻¹	0.0	1.8	0.0	1.0	0.0	1.4
<i>∆E</i> ₀/ kJ mol ⁻¹	0.0	1.6	0.0	1.0	0.0	1.2
⊿G / kJ mol⁻¹	0.0	1.8	0.0	1.3	0.0	0.8
∆E _c / kJ mol ⁻¹	-16.02	-14.98	-16.02	-14.98	-16.28	-15.10

Table S3. Theoretical spectroscopic parameters of the first two stable isomers of the benzofuran…hydrogen sulfide dimer using the B3LYP-D3(BJ) method and the def2–TZVP, jun-cc-pVTZ and cc-pVTZ basis sets.

^aParameter definition as in Table S1. ^bRelative deviations respect to the experimental values in Table 2 in square brackets, defined as (theory-experiment)/experiment.

Table S4. Theoretical spectroscopic parameters of the first two stable isomers of the benzofuran…hydrogen sulfide dimer using the B2PLYF
D3(BJ) method and the def2–TZVP, jun-cc-pVTZ and cc-pVTZ basis sets.

	B2PLYP-D3(BJ)									
	def2-	TZVP	jun-cc	-pVTZ	cc-pVTZ					
Parameters	I	11	I	П	I	II				
A / MHz	1167.9[-0.5%]	1197.7[2.0%]	1167.8[-0.5%]	1191.8[1.5%]	1169.2[-0.4%]	1202.1[2.4%]				
<i>B</i> / MHz	1087.7[4.8%]	1112.7[7.2%]	1083.0[4.4%]	1118.2[7.8%]	1083.1[4.4%]	1100.1[6.0%]				
C / MHz	788.6[3.2%]	812.4[6.3%]	786.1[2.9%]	812.8[6.4%]	786.8[3.0%]	807.9[5.8%]				
<i>D</i> 」 / kHz	0.64	2.5	0.89	2.4	1.9	2.8				
<i>D_{JK} /</i> kHz	4.1	-6.9	2.6	-6.3	-2.9	-8.1				
<i>D</i> κ/ kHz	-4.5	4.8	-3.3	4.4	1.3	5.7				
δ₁ / kHz	-0.20	-0.28	-0.2	-0.25	-0.16	-0.34				
δ_{κ} / kHz	18.2	-13.0	13.3	-13.6	-1.2	-13.2				
µ₁ / D	1.4	0.1	1.4	0.1	1.5	0.1				
<i>µ</i> ₀ ∕ D	0.2	0.5	0.1	0.5	0.1	0.5				
μ _c / D	0.9	0.2	0.9	0.3	0.8	0.2				
∆E/kJ mol ⁻¹	0.0	1.3	0.0	0.8	0.0	0.9				
∆E₀/kJ mol⁻¹	0.0	1.5	0.0	0.9	0.0	1.3				
⊿G / kJ mol⁻¹	0.0	1.0	0.0	1.1	0.0	1.0				
$\Delta E_c / kJ mol^{-1}$	-14.02	-13.10	-14.81	-13.89	-14.35	-13.26				

^aParameter definition as in Table S3.

J'	K _a '	K _c '	J‴	Ka"	<i>K</i> _c "	Vobs./ MHz	$\Delta v / MHz$
2	1	2	1	1	1	2738.5625	0.0063
2	0	2	1	0	1	2845.6145	0.0057
2	1	1	1	1	0	3078.0462	0.0068
3	1	3	2	1	2	4073.7992	0.0054
3	0	3	2	0	2	4152.9848	-0.0033
3	2	2	2	2	1	4362.3915	0.0099
3	1	2	2	1	1	4567.3209	0.0095
3	2	1	2	2	0	4571.8566	0.0159
4	1	4	3	1	3	5385.2652	-0.0020
4	0	4	3	0	3	5422.9739	-0.0014
4	2	3	3	2	2	5766.0614	0.0065
4	3	2	3	3	1	5908.1656	0.0016
4	1	3	3	1	2	5979.8782	-0.0042
4	3	1	3	3	0	5992.5122	-0.0030
4	2	2	3	2	1	6156.4107	-0.0062
5	1	5	4	1	4	6681.3286	0.0057
5	0	5	4	0	4	6695.1843	-0.0031
5	2	4	4	2	3	7132.9470	0.0080
5	1	4	4	1	3	7296.5123	-0.0055
5	3	3	4	3	2	7373.0300	0.0044
5	2	3	4	2	2	7684.2779	-0.0256
6	1	6	5	1	5	7969.8582	0.0073
6	0	6	5	0	5	7974.2982	0.0040
6	1	6	5	0	5	7976.1196	0.0052
5	3	3	5	2	4	2061.0194	0.0031
5	2	4	5	1	5	2362.4727	0.0072
5	2	4	5	0	5	2368.7347	0.0057
2	0	2	1	1	1	2601.5311	0.0054
2	1	2	1	0	1	2982.6314	-0.0079
2	2	1	1	1	0	3810.2785	-0.0100
3	1	2	2	2	1	3835.0655	0.0033
3	0	3	2	1	2	4015.9664	0.0088
2	2	0	1	1	1	4042.7290	-0.0011
3	1	3	2	0	2	4210.8185	-0.0057
3	2	2	2	1	1	5094.6215	-0.0092
4	0	4	3	1	3	5365.1385	-0.0007
4	1	4	3	0	3	5443.0988	-0.0046
4	1	3	3	2	2	5452.5699	0.0068
3	2	1	2	1	2	5876.0245	0.0098
3	3	1	2	2	0	5978.4929	-0.0091
3	2	1	2	0	2	6013.0569	0.0117
3	3	0	2	2	1	6056.9134	0.0041
4	2	3	3	1	2	6293.3657	-0.0085

Table S5. Experimental transition frequencies for the parent species of the benzofuran...(32 S)-sulfur dioxide dimer (quantum numbers *J*, *K*_a, *K*_c).

5 2 3 4 3 2 6525.8748 -	-0.0203 0.0000
	0.0000
5 0 5 4 1 4 6675.0593	0.0000
5 1 5 4 0 4 6701.4565	0.0055
5 1 4 4 2 3 6983.0237 -	-0.0023
4 3 2 3 2 1 7314.8174 -	-0.0080
5 4 1 4 4 0 7431.9355 -	-0.0085
5 2 4 4 1 3 7446.4302 -	-0.0005
4 3 1 3 2 2 7687.0347 -	-0.0083
4 2 2 3 1 3 7958.6430	0.0051
6 0 6 5 1 5 7968.0400	0.0093

Table S6. Experimental transition frequencies for the ³⁴S isotopologue of the benzofuran...sulfur dioxide dimer (quantum numbers *J*, K_a , K_c).

J	Ka'	K _c '	J‴	Ka"	Kc"	𝒴 v₀₀₅./ MHz	$\Delta v / MHz$
3	1	3	2	1	2	4032.8700	0.0044
3	0	3	2	0	2	4114.8360	-0.0076
3	2	2	2	2	1	4314.1075	0.0138
3	2	1	2	2	0	4513.4118	0.0027
3	1	2	2	1	1	4517.0092	0.0094
4	1	4	3	1	3	5332.6858	-0.0005
4	0	4	3	0	3	5373.3958	-0.0055
4	2	3	3	2	2	5704.7782	0.0132
4	1	3	3	1	2	5920.4109	-0.0049
4	2	2	3	2	1	6080.7659	-0.0021
5	1	5	4	1	4	6617.0730	-0.0021
5	0	5	4	0	4	6632.6614	-0.0115
5	2	4	4	2	3	7060.4558	0.0034
5	1	4	4	1	3	7231.4724	0.0087
5	2	3	4	2	2	7597.0721	-0.0177
6	1	6	5	1	5	7893.6258	-0.0013
6	0	6	5	0	5	7898.8302	0.0058

J	K _a '	K _c '	v	J″	K _a "	<i>K</i> _c "	v"	𝒴 ν₀₀₅./ MHz	$\Delta v / MHz$
1	1	0	0	0	0	0	0	2211.6737	-0.0024
2	1	2	0	1	1	1	0	3329.0151	0.0012
2	0	2	0	1	0	1	0	3426.0253	-0.0011
2	1	1	0	1	1	0	0	3875.8767	-0.0022
2	1	1	0	1	0	1	0	4286.3104	-0.0024
2	2	0	0	1	1	0	0	4463.2979	0.0048
2	2	1	0	1	1	1	0	4560.3066	0.0001
2	2	0	0	1	0	1	0	4873.7283	0.0013
3	1	3	0	2	1	2	0	4903.0701	0.0000
3	0	3	0	2	0	2	0	4935.3800	0.0018
3	2	2	0	2	2	1	0	5403.5634	0.0086
3	1	2	0	2	1	1	0	5632.9067	-0.0042
3	2	1	0	2	2	0	0	5871.7954	0.0046
4	1	4	0	3	1	3	0	6443.4540	-0.0012
4	0	4	0	3	0	3	0	6449.9174	0.0020
3	2	1	0	2	1	1	0	6459.2170	0.0122
3	1	2	0	2	0	2	0	6493.1842	-0.0131
3	2	2	0	2	1	2	0	6634.8507	0.0033
3	3	0	0	2	2	0	0	6776.5255	-0.0043
3	3	1	0	2	2	1	0	6862.5526	-0.0041
4	2	3	0	3	2	2	0	7052.4148	-0.0091
4	1	3	0	3	1	2	0	7183.2178	-0.0023
3	2	1	0	2	0	2	0	7319.4937	0.0025
3	3	0	0	2	1	1	0	7363.9455	0.0016
4	3	2	0	3	3	1	0	7418.9459	0.0031
4	2	2	0	3	2	1	0	7768.4635	0.0021
4	3	1	0	3	3	0	0	7772.7316	-0.0041
5	1	5	0	4	1	4	0	7973.5707	0.0038
5	0	5	0	4	0	4	0	7974.6030	-0.0018
1	1	0	1	0	0	0	1	2211.2558	0.0018
4	1	3	1	4	1	4	1	2289.6117	0.0046
2	1	2	1	1	1	1	1	3329.7212	0.0000
2	0	2	1	1	0	1	1	3426.1735	-0.0025
2	1	1	1	1	1	0	1	3877.1574	-0.0003
2	1	1	1	1	0	1	1	4286.6732	0.0002
2	2	0	1	1	1	0	1	4461.8018	-0.0003
2	2	1	1	1	1	1	1	4558.2554	-0.0024
2	2	0	1	1	0	1	1	4871.3148	-0.0025
3	1	3	1	2	1	2	1	4903.7322	0.0020
3	0	3	1	2	0	2	1	4935.5800	0.0024
3	1	2	1	2	2	0	1	5048.8676	0.0042
3	2	2	1	2	2	1	1	5405.0445	0.0002
3	1	2	1	2	1	1	1	5633.5015	-0.0062

Table S7. Experimental transition frequencies for the parent species of the benzofuran····(32 S)-hydrogen sulfide dimer (quantum numbers *J*, *K*_a, *K*_c).

3	2	1	1	2	0	0	1	5874.5716	0.0012
4	1	4	1	3	1	3	1	6444.1628	0.0012
4	0	4	1	3	0	3	1	6450.4727	-0.0018
3	1	2	1	2	0	2	1	6494.0066	0.0020
3	2	2	1	2	1	2	1	6633.5748	-0.0061
3	3	0	1	2	2	0	1	6773.1923	0.0025
3	3	1	1	2	2	1	1	6859.1410	0.0012
4	2	3	1	3	2	2	1	7053.5597	-0.0025
4	1	3	1	3	1	2	1	7182.8323	0.0068
3	2	1	1	2	0	2	1	7319.7128	0.0011
3	3	0	1	2	1	1	1	7357.8330	-0.0011
4	3	2	1	3	3	1	1	7421.6364	-0.0007
4	2	2	1	3	2	1	1	7770.4036	0.0041
4	3	1	1	3	3	0	1	7777.6680	-0.0058
5	1	5	1	4	1	4	1	7974.4305	-0.0008
5	0	5	1	4	0	4	1	7975.4381	0.0008

-	J′	K _a '	K _c '	v	J‴	K _a "	К _с "	v″	Vobs./ MHz	$\Delta v / MHz$
-	2	1	1	0	1	1	0	0	3759.4382	0.0041
	3	1	3	0	2	1	2	0	4783.3880	0.0040
	3	0	3	0	2	0	2	0	4828.5380	0.0007
	3	2	2	0	2	2	1	0	5250.0754	-0.0040
	3	1	2	0	2	1	1	0	5494.9004	0.0059
	3	2	1	0	2	2	0	0	5671.6879	-0.0208
	4	1	4	0	3	1	3	0	6291.2003	0.0030
	4	0	4	0	3	0	3	0	6302.4753	-0.0097
	4	2	3	0	3	2	2	0	6872.9002	0.0188
	4	2	2	0	3	2	1	0	7546.3376	0.0111
	5	0	5	0	4	0	4	0	7788.2125	-0.0084
	3	2	1	0	2	1	1	0	6326.4128	-0.0011
	3	2	2	0	2	1	2	0	6532.3127	-0.0024
	3	3	0	0	2	2	0	0	6732.7502	0.0088
	3	3	1	0	2	2	1	0	6816.7752	-0.0107
	2	1	1	1	1	1	0	1	3760.5882	-0.0107
	3	1	3	1	2	1	2	1	4784.0755	0.0095
	3	0	3	1	2	0	2	1	4828.7505	-0.0086
	3	2	2	1	2	2	1	1	5251.4504	-0.0031
	3	1	2	1	2	1	1	1	5495.7254	0.0152
	3	2	1	1	2	2	0	1	5674.2254	-0.0097
	4	1	4	1	3	1	3	1	6291.9253	-0.0066
	4	0	4	1	3	0	3	1	6303.0253	-0.0057
	4	2	3	1	1	2	2	1	6874.0877	0.0144
	4	3	2	1	3	3	1	1	7192.6501	0.0087
	4	3	1	1	2	3	0	1	7480.4001	-0.0177
	4	2	2	1	3	2	1	1	7548.4751	0.0171
	5	1	5	1	1	1	4	1	7786.8500	-0.0046
	5	0	5	1	0	0	4	1	7789.0500	0.0005
	3	2	1	1	0	1	1	1	6326.2128	0.0061
	3	2	2	1	1	1	2	1	6531.0377	0.0035
	3	3	0	1	1	2	0	1	6729.3377	0.0060
	3	3	1	1	0	2	1	1	6813.4127	-0.0188

Table S8. Experimental transition frequencies for the ³⁴S isotopologue of the benzofuran...hydrogen sulfide dimer (quantum numbers *J*, K_a , K_c).

Table S9. Substitution coordinates according to the Kraitchman equations for the position of the sulfur atom in the benzofuran...sulfur dioxide dimer (principal inertial axis system).

Atom: S	а	b	С
Substitution coordinates	±1.9365(8)	±0.384(4)	±0.352(5)
lsomer 1			
B2PLYP-D3(BJ)/cc-pVTZ	1.8236	-0.5933	0.3875
B2PLYP-D3(BJ)/jun-cc-pVTZ	1.8390	-0.5256	0.3899
lsomer 2			
B2PLYP-D3(BJ)/cc-pVTZ	1.9272	0.0647	-0.4332
B2PLYP-D3(BJ)/jun-cc-pVTZ	1.9202	-0.1309	-0.4282

Table S10. Substitution coordinates according to the Kraitchman equations for the position of the sulfur atom in the benzofuran…hydrogen sulfide dimer (principal inertial axis system).

Atom: S	а	b	С
Substitution coordinates	±2.8224(5)	±0.610(3)	imaginary
lsomer 1			
B2PLYP-D3(BJ)/cc-pVTZ	2.7972	-0.3826	-0.0631
B2PLYP-D3(BJ)/jun-cc-pVTZ	2.8110	-0.2752	-0.0658
lsomer 2			
B2PLYP-D3(BJ)/cc-pVTZ	2.2929	-1.4020	-0.1261
B2PLYP-D3(BJ)/jun-cc-pVTZ	2.2833	-1.3816	-0.1290

Table S11. Near-equilibrium atomic coordinates (r_e) according to density-functional theory (B2PLYLP-D3(BJ)/cc-pVTZ) for the global minimum (isomer I) of the benzofuran...sulfur dioxide dimer and comparison with the effective structure (r_0) coordinates of Table 3 (principal inertial axis system).

	Isomer I								
		r _e		r _o					
Atom	a a	b	С	а	b	С			
0	-0.9883	1.8504	0.7083	-1.4823	1.6102	0.7466			
С	-0.4861	2.3954	-0.4454	-1.1364	2.2955	-0.3903			
С	-0.4030	1.4907	-1.4477	-0.7862	1.4675	-1.4082			
С	-0.8805	0.2487	-0.8998	-0.9159	0.1268	-0.8869			
С	-1.0300	-1.0626	-1.3688	-0.7180	-1.1669	-1.3897			
С	-1.5086	-2.0238	-0.4921	-0.9593	-2.2447	-0.5442			
С	-1.8412	-1.7037	0.8342	-1.3913	-2.0539	0.7844			
С	-1.7052	-0.4107	1.3223	-1.5936	-0.7789	1.3024			
С	-1.2237	0.5359	0.4323	-1.3466	0.2828	0.4402			
Н	-0.2340	3.4377	-0.3862	-1.1919	3.3651	-0.3114			
Н	-0.0350	1.6751	-2.4406	-0.4778	1.7641	-2.3944			
Н	-0.7658	-1.3210	-2.3837	-0.3872	-1.3205	-2.4063			
Н	-1.6264	-3.0423	-0.8319	-0.8136	-3.2505	-0.9098			
Н	-2.2094	-2.4797	1.4890	-1.5685	-2.9152	1.4114			
Н	-1.9513	-0.1508	2.3403	-1.9239	-0.6161	2.3166			
0	2.5343	-0.8240	-0.8648	2.6775	-0.3056	-0.8724			
S	1.8236	-0.5933	0.3875	1.9591	-0.2607	0.3641			
0	2.0495	0.6757	1.0706	1.9274	0.9583	1.1123			

Table S12. Predicted near-equilibrium atomic coordinates (principal inertial axis system) for isomers II, III and IV of the benzofuransulfur
dioxide dimer (B2PLYP-D3(BJ)/cc-PVTZ).

		Isomer II			Isomer III			Isomer IV	/
Atom	a a	b	С	а	b	С	а	b	С
0	-1.0762	1.2991	1.2846	-2.3595	-0.4079	-1.1392	-0.3859	-1.9085	-0.4433
С	-1.5237	2.1231	0.2831	-2.6181	-1.4443	-0.2773	0.2977	-1.9770	0.7426
С	-1.7555	1.4534	-0.8684	-1.9565	-1.3142	0.8949	-0.0310	-0.9653	1.5817
С	-1.4243	0.0796	-0.6020	-1.2053	-0.0915	0.7922	-1.0107	-0.1721	0.8856
С	-1.4047	-1.1086	-1.3395	-0.3206	0.6122	1.6167	-1.7297	0.9957	1.1602
С	-0.9810	-2.2698	-0.7094	0.2366	1.7889	1.1339	-2.5971	1.4748	0.1910
С	-0.5814	-2.2687	0.6358	-0.0725	2.2720	-0.1477	-2.7570	0.8159	-1.0383
С	-0.5911	-1.1018	1.3902	-0.9471	1.5897	-0.9837	-2.0498	-0.3415	-1.3360
С	-1.0138	0.0484	0.7414	-1.4924	0.4183	-0.4831	-1.1879	-0.8025	-0.3545
Н	-1.6174	3.1587	0.5522	-3.2924	-2.1921	-0.6516	0.9827	-2.7999	0.8306
Н	-2.1024	1.8814	-1.7913	-1.9916	-1.9984	1.7232	0.3732	-0.8010	2.5645
Н	-1.7086	-1.1225	-2.3762	-0.0698	0.2456	2.6015	-1.6088	1.5131	2.1005
Н	-0.9567	-3.1970	-1.2630	0.9269	2.3440	1.7517	-3.1626	2.3752	0.3811
Н	-0.2532	-3.1903	1.0928	0.3848	3.1873	-0.4922	-3.4428	1.2187	-1.7691
Н	-0.2757	-1.0821	2.4221	-1.1917	1.9466	-1.9724	-2.1591	-0.8568	-2.2778
0	1.7886	1.5095	-0.5804	3.1065	0.2663	-0.5114	2.1558	1.6757	0.5267
S	1.9272	0.0647	-0.4332	1.9240	-0.5813	-0.4173	1.9868	0.5971	-0.4388
0	2.8298	-0.4301	0.5994	2.0210	-1.7932	0.3882	3.1286	-0.2724	-0.6963

Table S13. Near-equilibrium atomic coordinates (r_e) according to density-functional theory (B2PLYLP-D3(BJ)/cc-pVTZ) for the global minimum (isomer I) of the benzofuran...hydrogen sulfide dimer and comparison with the effective structure (r_0) coordinates of Table 3 (principal inertial axis system).

	Isomer I						
		r e					
Atom	a a	b	С	а	b	С	
0	-1.0754	-1.3908	-1.0745	-1.3254	-1.2493	-1.0568	
С	-1.1256	-2.1913	0.0369	-1.4155	-2.0583	0.0474	
С	-0.9695	-1.4886	1.1832	-1.0956	-1.4065	1.1950	
С	-0.8021	-0.1149	0.7868	-0.7691	-0.0556	0.8021	
С	-0.5713	1.0956	1.4479	-0.3652	1.1110	1.4666	
С	-0.4202	2.2432	0.6843	-0.1403	2.2551	0.7082	
С	-0.4977	2.2043	-0.7175	-0.3106	2.2538	-0.6915	
С	-0.7289	1.0143	-1.3956	-0.7106	1.1072	-1.3698	
С	-0.8742	-0.1197	-0.6144	-0.9295	-0.0238	-0.5923	
Н	-1.2819	-3.2362	-0.1584	-1.7197	-3.0687	-0.1525	
Н	-0.9734	-1.8922	2.1797	-1.0910	-1.8239	2.1857	
Н	-0.5019	1.1354	2.5252	-0.2328	1.1192	2.5384	
Н	-0.2369	3.1885	1.1739	0.1714	3.1654	1.1985	
Н	-0.3732	3.1179	-1.2799	-0.1266	3.1615	-1.2471	
Н	-0.7811	0.9668	-2.4723	-0.8453	1.0899	-2.4402	
Н	1.9707	0.6736	-0.0571	2.0958	0.4700	-0.0989	
S	2.7972	-0.3826	-0.0631	2.8151	-0.6554	-0.1304	
н	1.8237	-1.2141	0.3346	1.7801	-1.3929	0.2815	

Table S14. Predicted near-equilibrium atomic coordinates (principal inertial axis system)
for isomer II of the benzofuran…hydrogen sulfide dimer (B2PLYP-D3(BJ)/cc-PVTZ).

_		Isomer II	
	а	b	С
0	-1.6401	-0.7841	-1.0463
С	-1.9468	-1.5480	0.0505
С	-1.4231	-1.0437	1.1908
С	-0.7123	0.1474	0.8075
С	0.0516	1.1135	1.4698
С	0.6150	2.1354	0.7199
С	0.4279	2.2104	-0.6699
С	-0.3307	1.2646	-1.3488
С	-0.8821	0.2522	-0.5820
Н	-2.5442	-2.4177	-0.1511
Н	-1.5220	-1.4649	2.1749
Н	0.2087	1.0605	2.5372
Н	1.2123	2.8896	1.2111
Н	0.8819	3.0201	-1.2223
Н	-0.4787	1.3056	-2.4169
Н	2.0787	-0.0850	-0.2588
S	2.2929	-1.4020	-0.1261
Н	3.4687	-1.3457	-0.7678

Table S15. Effective structure fit of the six observed rotational constants of the dimer benzofuran…sulfur dioxide to the three parameters in Table 3. The two monomers were fixed to the effective structures of refs. 46 and 51. The initial orientation between the two monomers was taken from the ab initio calculation B2PLYP-D3(BJ)/cc-pVTZ.

Isotopo	Namo	Avic	Rotational	Residual
isotope	Name	AXIS	constant	(expcalc.)
1	Parent	A / MHz	1056.0360	0.1229
		B / MHz	811.9498	0.0776
		C / MHz	642.2082	-0.0077
2	³⁴ S	A / MHz	1054.9000	0.4789
		B / MHz	802.0770	-0.1957
		C / MHz	635.9850	-0.0219
		rms / MHz		0.2048

Table S16. Effective structure (r_0) fit of the six observed rotational constants of the dimer benzofuran…hydrogen sulfide to the three parameters in Table 3. The two monomers were fixed to the effective structures of refs. 46 and 51. The initial orientation between the two monomers was taken from the DFT calculation B2PLYP-D3(BJ)/cc-pVTZ.

Isotopo	Namo	Avic	Rotational	Residual
isotope	Name	AXIS	constant	(expcalc.)
1	Parent	A / MHz	1173.9314	0.0009
		B / MHz	1037.5461	-0.0004
		C / MHz	763.9491	-0.0120
2	³⁴ S	A / MHz	1172.4240	-0.3778
		B / MHz	1004.8820	0.0064
		C / MHz	745.4430	-0.0520
		rms / MHz		0.1558

Table S17. Natural-bond-orbital analysis (stabilization energy contributions $\ge 0.2 \text{ kJ} \text{ mol}^{-1}$) for the benzofuran-sulfur dioxide complex using the B3LYP-D3(BJ) / aug-cc-pVTZ level.

Interactions	Donor NBO	Acceptor NBO	E / kJ mol⁻¹
	BD(2)C3a-C4	BD*(1)S8-010	2.7
	BD(2)C3a-C4	BD*(2)S8-010	1.0
	BD(2)C3a-C4	BD*(1)S8-09	1.3
	BD(2)C3a–C4	RY*(5)S8	0.5
	BD(1)C3a-C4	RY*(34)S8	0.2
ς π	BD(1)C3a-C4	RY*(16)S8	0.3
3	BD(2)C7a–C7	BD*(1)S8-O9	0.4
	BD(2)C7a–C7	BD*(1)S8-010	0.8
	BD(1)C7a–C3a	RY*(16)S8	0.2
	BD(1)C7a–C3a	RY*(13)S8	0.4
	BD(1)C3a-C3	RY*(13)S8	0.2
	BD(1)C3-C2	BD*(1)S8-09	0.2
	BD(1)S8-010	RY*(1)C3a	0.5
	BD(1)S8-O10	RY*(6)C3a	0.6
	BD(1)S8-O10	RY*(11)C3a	0.5
	BD(2)S8-010	RY*(2)C3a	0.3
	BD(2)S8-O10	RY*(3)C3a	1.2
C2 	BD(2)S8-O10	RY*(11)C3a	0.3
0.5.1.1	BD(1)S8-O9	RY*(3)C3a	0.6
	BD(1)S8-O9	RY*(10)C3a	0.2
	BD(2)S8-O9	RY*(1)C3a	0.7
	BD(2)S8-O9	RY*(2)C3a	0.5
	BD(2)S8-O9	RY*(4)C3a	0.2
	BD(2)S8-O9	RY*(11)C3a	0.2
	BD(2)S8-O9	RY*(2)C7a	0.5
C2 	BD(2)S8-O9	RY*(4)C7a	0.2
C2…π	BD(2)S8-O9	RY*(6)C7a	0.4
	BD(1)S8-O9	RY*(10)C7a	0.2
SC2	LP(1)S8	RY*(3)C3a	1.2
563	LP(1)S8	RY*(1)C3a	0.7

	LP(1)S8	RY*(2)C3a	0.3
π…π*	BD(1)S8-O9	BD*(1)C7–C7a	0.7
	BD(1)S8-O9	BD*(1)C3a-C4	0.6
n…π*	LP(1)S10	BD*(1)C4–C3a	0.5

Table S18. The NBO analysis (stabilization energy contributions ≥ 0.2 kJ mol⁻¹) for the benzofuran-hydrogen sulfide complex using the B3LYP-D3(BJ) / aug-cc-pVTZ level.

Interactions	Donor NBO	Acceptor NBO	E / kJ mol⁻¹
	BD(2)C7-C6	BD*(1)S8-H9	0.6
	BD(2)C5-C4	BD*(1)S8-H9	1.4
	BD(1)C6-C5	RY*(3)H9	0.3
SH9…π	BD(1)C5-C4	RY*(3)H9	0.3
	BD(1)C3a-C4	RY*(1)H9	0.2
	BD(1)C3a-C4	RY*(15)H9	0.4
	BD(1)C7a-C3a	RY*(9)H9	0.4
	BD(2)C3-C2	BD*(1)S8-H10	1.7
SU10 -	BD(2)C7a–C3a	BD*(1)S8-H10	0.3
5Η10…π	BD(1)C4–C3a	RY*(7)H10	0.4
	BD(2)C7a–C3a	RY*(7)H10	0.2
n…π*	LP(2)S8	BD*(2)C7a-C3a	0.4
Total			6.4