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MULTILAYER DESORPTION SIGNALS 

Figure S1 shows experimental desorption curves with varying initial coverages of water desorbing 

from calcite (10.4). As explained in the main text, we used the integral over the observed 𝛼, 𝛽-

double peak to determine the intensity corresponding to one monolayer and calibrate the measured 

desorption rates. To this end, we do not include desorption rates measured above 320 K in the 

calibration because of the baseline artifacts discussed in the main text. Moreover, for the 

desorption curves in Figure S1(a) we also exclude desorption rates measured below 200 K as the 

desorption curve used for calibration (blue line in Figure S1(a)) already contains a small second- 

layer desorption signal. In this case, an integration over the full desorption spectra would yield an 

erroneously high monolayer saturation. Moreover, we do not use the desorption curve with the 

next smaller 𝛼, 𝛽-peak intensity, because its total intensity is significantly smaller and, thus, the 

expected error is much higher than for the described procedure. Note that the discussed calibration 

of the desorption rate does not affect the shape of the desorption curves but only scales the 

displayed desorption rates. Desorption curves for very high initial coverages up to 6.0 ML are 

shown in Figure S1(b). The desorption curves show the development of three additional desorption 

peaks below 180 K, namely the 𝛾 peak at 163 K, the 𝛿 peak at 160 K and the 𝜀 peak at 153 K. We 

assign these to desorption of water molecules from the second and higher water layers as explained 

in the main text. The peak 𝜀 peak is the last peak we observe with increasing initial coverage and 

its peak temperature is in excellent agreement with the desorption temperatures reported in 

literature for multilayer water desorption from various substrates [1-3]. Consequently, we assign 

the 𝜀 peak to desorption of water molecules bound in the multilayer.  
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Figure S1. Experimental TPD curves of water desorbing from calcite (10.4) including desorption 
curves with initial coverages above 1.0 ML. (a) Set of desorption curves with initial coverages 
slightly above 1.0 ML showing the plateau area developing between 180 K and 230 K after 
saturation of the 𝛼, 𝛽-double peak. The desorption curves were measured in the temperature range 
from 120 K to 500 K. (b) Desorption curves showing the appearance of additional 𝛾, 𝛿 and 𝜀 
desorption peaks below 180 K for initial coverages up to 6.0 ML. The desorption curves were 
measured in the temperature range from 120 K to 600 K. In (a) and (b) one monolayer is defined 
by the integrated saturation intensity of the 𝛼, 𝛽-double peak between 200 K and 320 K. The 
desorption curves used for determination of the saturated peak intensity are highlighted in blue. 
All displayed desorption curves were recorded with a heating rate of 1 K s−1 at a mass-to-charge 
ratio of 𝑚/𝑧 18.  
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Experimental desorption curves measured for different initial coverages of ethanol on calcite 

(10.4) are shown in Figure S2. As described for the desorption curves of water, the calibration fac- 

tor for the desorption curves of ethanol is determined from the integral over the saturated 

monolayer desorption signal. Again, we excluded desorption rates measured above 350 K due to 

baseline artifacts. Here, we chose the desorption curve highlighted as a green line in Figure S2 for 

calibration, because the two desorption curves with higher monolayer peak intensities were 

measured for initial coverages significantly above one monolayer. This causes a baseline offset 

originating from the observed intensive multilayer desorption signal and, thus, the integrated peak 

intensity would be erroneously high. 

Figure S2. Experimental TPD curves of ethanol desorbing from calcite (10.4) including desorption 
curves with initial coverages above 1.0 ML, where the desorption curve corresponding to a 
coverage of 1.0 ML is highlighted in green. One monolayer (1.0 ML) is defined by the integrated 
saturation intensity of the observed double-peak structure. The curves were measured in the 
temperature range from 120 K to 500 K with a heating rate of 1 K s−1 at a mass-to-charge ratio of 
𝑚/𝑧 31.  
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TWO-SITE EXCHANGE MODEL 

In the main text, we use a two-site-exchange model to elucidate whether the desorption curves of 

water and ethanol can be explained by a (2x1) reconstruction of the calcite surface. Here, we derive 

the relevant model equations and explain how we used these equations to simulate desorption 

curves.  

4.1 Model Description 

In our two-site-exchange model, the surface consists of 𝑁ad well-defined adsorption sites. Each 

adsorption site is either of type 𝐴 or type 𝐵 and can be occupied only once. The site density 𝜌஺ 

equals the fraction of type 𝐴 sites in all adsorption sites and the coverage 𝜃୅ of type 𝐴 is the fraction 

of occupied 𝐴 sites with respect to all adsorption sites. The site density 𝜌஻ and coverage 𝜃୆ for 

type 𝐵 adsorption sites are defined accordingly. Since a (2x1) reconstructed surface has the same 

number of adsorption sites of type 𝐴 and 𝐵, the site densities in our case are given by 𝜌஺ ൌ 𝜌஻ ൌ

0.5. In general, however, the presented model can be used for systems with other site densities as 

well.  

In terms of processes, our model explicitly includes the exchange of molecules between adsorption 

sites of different types — i.e., from 𝐴 to 𝐵 and from 𝐵 to 𝐴 — as well as desorption from both 

types of adsorption sites. Additionally, we implicitly consider diffusion between adsorption sites 

of the same type by assuming that all adsorption sites of the same type are occupied with equal 

probability (𝜃୅ for type 𝐴 sites and 𝜃୆ for type 𝐵 sites).  
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To simulate desorption curves based on our model, we need to calculate the total normalized 

desorption rate1 𝑟  as a function of temperature. For a system with two adsorption sites, this total 

desorption rate is the sum of the desorption rates from both types of adsorption sites. Here, we 

describe the desorption from sites 𝐴 and 𝐵 with a Polanyi-Wigner style approach, i.e., the 

normalized desorption rate for one type of adsorption sites is given by 𝑟 ,୧ ൌ 𝑘ୢ,୧𝜃୧ with i ൌ A, B. 

Consequently, the total desorption rate is given by equation 1.  

𝑟 ൌ 𝑘ୢ,୅𝜃୅ ൅ 𝑘ୢ,୆𝜃୆ (1) 

As shown in equation 1, the total desorption rate depends on the rate constants for desorption from 

both sites as well as the coverages of sites 𝐴 and 𝐵. To obtain the site coverages 𝜃୅ and 𝜃୆, we 

need to consider the exchange of molecules between the adsorption sites. In our case, the proximity 

of the desorption temperatures of molecules adsorbed on site 𝐴 and 𝐵 (see Figure 2a) indicate that 

the energy difference between both types of adsorption sites is small compared to the desorption 

energy. Based on this observation, we expect that both exchange and diffusion are fast as compared 

to desorption. Consequently, we assume that the system is in equilibrium with respect to the 

occupation of different adsorption sites on the timescale of desorption. We can thus describe the 

exchange process by the corresponding equilibrium constant 𝐾୅୆, instead of explicitly considering 

the exchange rates in both directions. The exchange can be described as a reaction of one occupied 

adsorption site 𝐴 (coverage 𝜃஺) with an unoccupied site 𝐵 (coverage 𝜌஻ െ 𝜃஻) resulting in an 

unoccupied site 𝐴 (coverage 1 െ 𝜌஻ െ 𝜃஺) and an occupied site 𝐵 (coverage 𝜃஻), and vice versa. 

 

1 The normalized desorption rate 𝑟  is the desorption rate divided by the number of adsorption sites 
per layer 𝑁ad. 
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As the equilibrium constant is given by the ratio of product and educt coverages, we obtain 

equation 2.  

𝐾୅୆ ൌ
ሺ1 െ 𝜌஻ െ 𝜃஺ሻ𝜃஻

ሺ𝜌஻ െ 𝜃஻ሻ𝜃஺
 

(2) 

Additionally, the calculation of desorption curves requires a temperature-dependent description of 

the rate constants. To this end, we apply transition state theory according to equation 3, where 𝑥 

denotes the described process (e.g., 𝑥 = d for desorption) and the quantities ∆𝐸௫ and ∆𝑆௫ are the 

potential energy barrier and entropy change of the process respectively.  

𝑘௫ ൌ
𝑘஻𝑇

ℎ
exp ൬

∆𝑆௫

𝑘஻
െ

∆𝐸௫

𝑘஻𝑇
൰ 

(3) 

To obtain the equilibrium constant of site exchange 𝐾୅୆ we make use of the fact that it can also 

be described by the ratio of the rate constants of exchange 𝑘୅→୆/𝑘୆→୅. Thus, the applied transition 

state theory approach results in equation 4, which means that 𝐾୅୆ only depends on the potential 

energy and entropy differences between 𝐴 and 𝐵 ∆𝐸୅୆ and ∆𝑆୅୆ and not on the barriers of the 

exchange. As a consequence, our model depends on six independent kinetic parameters, i.e., two 

parameters for each rate constant of desorption and two additional parameters to describe the 

equilibrium constant of site exchange. For the fit of our model to the experimental data and 

interpretation of the results, however, it is desirable to minimize the number of model parameters. 

In order to do so, we assume that the desorption from both types of adsorption sites is reversible 

with a negligible energy barrier as observed for many cases of molecular adsorption in literature 

[4]. This assumption enables us to express ∆𝐸୅୆ and ∆𝑆୅୆ by the kinetic parameters of desorption 
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and, thus, the potential energy barrier between 𝐴 and 𝐵 is given by ∆𝐸୅୆ ൌ ∆𝐸ୢ,୆ െ ∆𝐸ୢ,୅ and the 

entropy difference by ∆𝑆୅୆ ൌ ∆𝑆ୢ,୆ െ ∆𝑆ୢ,୅.  

𝐾୅୆ ൌ exp ൬
∆𝑆୅୆

𝑘஻
െ

∆𝐸୅୆

𝑘஻𝑇
൰ 

(4) 

 

4.2 Interpretation of Entropic Parameters 

Next, we turn to the interpretation of the entropy changes upon desorption Δ𝑆ୢ,୧ obtained from our 

model. For a reversible adsorption-desorption process and a negligible activation energy of 

adsorption, Campbell and Sellers developed a model to relate the standard entropy of adsorption 

𝑆ୟୢ
଴  of the adsorbed species to the prefactor of a TPD experiment 𝜈଴ [4,5]. They find that the 

standard entropy of the transition state 𝑆୘ୗ
଴  is identical to the entropy of the molecules in the gas 

phase except for the entropy in the reaction coordinate, i.e., for translation orthogonal to the 

surface. Thus, the transition state is missing one translational degree of freedom, which results in 

equation 5 for adsorption entropy [4,5].  

𝑆ୟୢ
଴ ൌ 𝑆୥

଴ െ 𝑆୥,ଵୈି୲୰ୟ୬ୱ
଴ െ 𝑘୆ln ൬

ℎ𝜈଴

𝑘୆𝑇
൰ 

(5) 

In our model, the prefactors of desorption from sites A and B are given by equation 6.  

𝜈଴,୧ ൌ
𝑘୆𝑇

ℎ
exp ൬

Δ𝑆ୢ,୧

𝑘୆
൰ 

(6) 

Insertion of our prefactors in equation 5 yields equation 7 for the adsorption entropy. 

𝑆ୟୢ,୧
଴ ൌ 𝑆୥

଴ െ 𝑆୥,ଵୈି୲୰ୟ୬ୱ
଴ െ Δ𝑆ୢ,୧ (7) 
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To calculate adsorption entropies from our prefactors, we also need the standard entropy and 

standard 1D-translational entropy of the gas phase. For the standard gas phase entropy we use 

values tabulated in literature [6] and 𝑆୥,ଵୈି୲୰ୟ୬ୱ
଴  is assumed to be one third of the total translational 

entropy in the gas phase 𝑆୥,୲୰ୟ୬ୱ
଴  as recommended by Campbell and Sellers [5]. The standard 

translational gas phase entropy is given by the Sackur-Tetrode equation [7], where 𝑝 is the pressure 

and Λ ൌ ℎ/ඥ2𝜋𝑚𝑘୆𝑇 the thermal wave length. 

𝑆୥,ଵୈି୲୰ୟ୬ୱ
଴ ൌ

1
3

𝑆୥,୲୰ୟ୬ୱ
଴ ൌ

1
3

𝑘୆ ൤ln ൬
𝑘୆𝑇
𝑝Λଶ൰ ൅

5
2

൨ 
(4) 

For water, we obtain adsorption entropies of 𝑆ୟୢ,୅
଴ ሺ𝑇୫ୟ୶,୅ሻ ൌ െ0.4 𝑘୆ and 𝑆ୟୢ,୆

଴ ሺ𝑇୫ୟ୶,୆ሻ ൌ

16.1 𝑘୆ for sites A and B, respectively. This means that water molecules adsorbed on site A seem 

to lose all their entropy upon adsorption while water molecules adsorbed on site B have almost the 

same entropy as the transition state. Hence, we seemingly obtain the two limiting cases possible 

for the adsorption of water on calcite. As discussed in the main text, this could be due to our model 

not including molecule-molecule interactions. 

4.3 Numerical Calculations 

For the numerical calculations we use a similar procedure as explained in our previous publication 

[8] for the case of quasi-equilibrium layer exchange. Desorption curves for systems with two types 

of adsorption sites were calculated numerically based on equations 2 to 4. To this end, equation 1 

was integrated as a differential equation of the total coverage 𝜃 with a fourth order Runge-Kutta 

algorithm. The site coverages 𝜃஺ and 𝜃஻ necessary for evaluation of the total desorption rate 𝑟  

according to equation 1 were calculated at each simulation step by solving the equation system 

consisting of equation 2 and the coverage balance 𝜃 ൌ 𝜃஺ ൅ 𝜃஻. Equations 3 and 4 were used to 
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describe the temperature dependence of the rate constants of desorption and the equilibrium 

constant of site exchange.  
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