Monolayer Molybdenum Diborides containing Flat and Buckled Boride Layers as Anode Materials for Lithium-Ion Batteries

Gayatree Barik^{1,2} and Sourav Pal* ^{1,2}

¹Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741 246, India ²Department of Chemistry, Ashoka University, Sonepat, Haryana-131 029, India Email: sourav.pal@ashoka.edu.in

Fig. S1: (i) Top and side view of various Li adsorption sites on the surface of P6/mmm MoB₂. (a) Hexagonal hollow site of Boron, (b) Boron Top, (c) Hollow position of Mo, (d) and Top position of Mo. The blue, green, and red balls represent the Mo, B, and Li atoms, respectively.

Fig. S1(ii): Top and side view of various Li adsorption sites on the surface of R^3m MoB₂. (a) Hexagonal hollow site of Boron, (b) Boron Top, (e) Furo position of B, (d) Hollow position of Mo, (e) Li at the center of three B and top of Mo (f) Li at the center of three Mo and top of B. The blue, green, and red balls represent the Mo, B, and Li atoms, respectively.

Fig. S2: (i) The strain-energy curves for the calculation of in-plane stiffness constants for P6/mmm Li₂MoB₂. The total energy of MoB₂ is plotted as a function of different amounts of strain along (a) the x-axis, (b) the y-axis, and (c) equi-biaxial strain along the x and y-axis, necessary for the calculation of in-plane stiffness constants.

Fig. S2: (ii) The strain-energy curves for the calculation of in-plane stiffness constants for $R\Im m$ Li₂MoB₂. The total energy of MoB₂ is plotted as a function of different amounts of strain along (a) the x-axis, (b) the y-axis, and (c) equi-biaxial strain along the x and y-axis, necessary for the calculation of in-plane stiffness constants.

Fig. S2: (iii) The strain-energy curves for the calculation of in-plane stiffness constants for P6/mmm Li₄MoB₂. The total energy of MoB₂ is plotted as a function of different amounts of strain along (a) the x-axis, (b) the y-axis, and (c) qui-biaxial strain along the x and y-axis, necessary for the calculation of in-plane stiffness constants.

Fig. S2: (iv) The strain-energy curves for the calculation of in-plane stiffness constants for $R\Im m$ Li₄MoB₂. The total energy of MoB₂ is plotted as a function of different amounts of strain along (a) the x-axis, (b) the y-axis, and (c) Equi-biaxial strain along the x and y-axis, necessary for the calculation of in-plane stiffness constants.

Fig. S3 (i): Top and side view of optimized geometries of Li adsorption with different Li concentrations adsorbed on both sides of $P6/mmm \ ^{MOB}_2$. (a) $^{Li}_{0.5}MOB_2$ (b) $^{Li}MOB_2$ (c) $^{Li}_2MOB_2$ and (d) $^{Li}_4MOB_2$.

Fig. S3 (ii): Top and side view of optimized geometries of Li adsorption with different Li concentrations adsorbed on both sides of $R3m \ MoB_2$. (a) $Li_{0.5}MoB_2$ (b) $LiMoB_2$ (c) Li_2MoB_2 (d) Li_3MoB_2 and (e) Li_4MoB_2 .

Fig. S4 (i): The fluctuation of total potential energy and snapshots taken at the end of MD simulations at 300 K (a) P6/mmm and (b) $R\Im m$ Li₂MoB₂ and at 500 K (c) P6/mmm and (d) $R\Im m$ Li₂MoB₂.

Fig. S4 (ii): The fluctuation of total potential energy and snapshots taken at the end of MD simulations at 300 K (a) P6/mmm and (b) R3m Li₄MoB₂ and 500 K (c) P6/mmm and (d) R3m Li₄MoB₂.

Fig. S5 (i): Energy barriers and diffusional pathways for the diffusion of Li over monolayer P6/mmm MoB₂ along the non-linear paths at the various surfaces.

Fig. S5 (ii): Energy barriers and diffusional pathways for the diffusion of Li over monolayer R3m MoB₂ along the non-linear paths at the various surfaces.

Table S1 (i): The specific lattice information for P6/mmm MoB₂ and R3m MoB₂.

	<i>P6/mmm</i> MoB ₂	$R\bar{3}m_{MOB_2}$
Space group	P6/mmm	R3m
Space group Number	191	166
Lattice parameters (Å)	a= 2.91 c= 3.37	a=2.86 c=20.93

Wyckoff positions	Mo: (1a) 0.00 0.00 0.00	Mo: (6c) 0, 0, 0.5758
	B : (2d) 0.333 0.666 0.50	B: (6c) 0, 0, 0.6817
		B: (6c) 0, 0, 0.1677

Table S1 (ii): The atomic coordinates for P6/mmm MoB₂ and R3m MoB₂.

<i>P6/mmm</i> MoB ₂	0.583313584	0.916652739	0.551014364	
	0.916652739	0.583313584	0.551014364	
	0.250016809	0.250016809	0.448985666	
$R\overline{3}m_{MOB_2}$	0.333333790	0.666666210	0.560779035	
	0.666666269	0.333333731	0.533561826	
	0.333333731	0.666666269	0.439220965	

Table S2 (i): The impact cut-off energy on the adsorption energy and band gap. The hexagonal hollow position is chosen for the lithiation of both monolayers. The adsorption of Li takes place at the hexagonal position of the B-side of both monolayers. The negative values of band gaps for the P6/mmm MoB₂ show the overlapping of VMB and CBM.

Ecut in eV	<i>P6/mmm</i> MoB ₂		R3m	MoB ₂
	AE in eV	Bandgap in eV	AE in eV	Bandgap in eV
400	-4.297	-0.603	-3.783	0.224
420	-4.297	-0.603	-3.779	0.224
440	-4.298	-0.603	-3.779	0.224
460	-4.299	-0.603	-3.779	0.224
480	-4.302	-0.602	-3.774	0.224
500	-4.302	-0.602	-3.776	0.224

Table S2 (ii): The impact of vacuum thickness with adsorption energy. The hexagonal hollow position is chosen for the lithiation of both monolayers.

Vacuum (Å)	Adsorption Energy (eV)	
	<i>P6/mmm</i> MoB ₂	$R\bar{3}m_{MOB_2}$
10	-4.24	-3.74
15	-4.29	-3.76
20	-4.32	-3.76
25	-4.33	-3.77

\mathbf{a}	\mathbf{n}	
- 1		
~	v	

Table S3 (i): The calculated adsorption energy with and without dispersion corrections, for P6/mmm MoB₂ and R3m MoB₂ at various positions.

Adsorption	Adsorption Energy (eV)			
Location	P6/mmm MoB ₂		$R3m_{MoB_2}$	
	DFT without dispersion correction	DFT+D3	DFT without dispersion correction	DFT+D3
B(Hollow)	-3.99	-4.22	-3.57	-3.88
B(Top)	-3.46	-3.70	-3.23	-3.53
B (Furo)			-2.82	-3.10
Mo (Hollow)	-2.61	-2.78	-2.57	-2.75
Mo (Top)	-2.50	-2.70	-2.44	-2.63
Mo (B top)			-2.48	-2.67

Table S3 (ii): The calculated adsorption energy with and without Hubbard parameter, for P6/mmm MoB₂ and R3m MoB₂ at various positions.

Adsorption	Adsorptio		Energy (eV)	
Location	P6/mmi	<i>P6/mmm</i> MoB ₂		MoB ₂
	DFT	DFT+U	DFT	DFT+U
B(Hollow)	-4.21	-4.22	-3.78	-3.88
B(Top)	-3.69	-3.70	-3.44	-3.53
B (Furo)			-3.00	-3.10
Mo (Hollow)	-2.78	-2.78	-2.73	-2.75
Mo (Top)	-2.68	-2.70	-2.62	-2.63
Mo (B top)			-2.65	-2.67

Table S4(i): The calculated Li migration barrier and Li-Vacancy barrier for the diffusion of Li at the various surfaces of flat and buckled MoB₂.

MoB ₂	Li-ion migration barrier energy in	Li-vacancy migration barrier
------------------	------------------------------------	------------------------------

	eV		energy in eV	
	At B side	At Mo side	At B side	At Mo side
P6/mmm	0.52	0.02	0.90	0.20
MoB ₂				
R3m MoB ₂	0.36	0.08	0.39	0.29

Table S4(ii): The calculated Li migration barrier and Li-Vacancy barrier for the diffusion of Li along the non-linear paths at the various surfaces of flat and buckled MoB₂.

MoB ₂		Li-ion migration barrier energy in eV along the non-linear		
2		path		
		At B side	At Mo side	
P6/mmm ^{MoB} 2		0.391	0.085	
R ³ m MoB ₂	Path I	0.092	0.047	
	Path II	0.086	0.105	