Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

## **Supporting Information**

Feifei Xu<sup>a</sup>, Zhixiao Gao, Zhencui Ge<sup>b</sup>, Hao Ma, Hao Ren, Houyu Zhu, Yuhua Chi, Wenyue Guo\*, Wen

Zhao\*

<sup>a</sup> School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China

<sup>b</sup> School of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China

\* Corresponding author.

E-mail addresses:

wyguo@upc.edu.cn (Wenyue Guo)

zhaowen@upc.edu.cn (Wen Zhao)

| (* 4155)         |                    |            |                    |               |  |
|------------------|--------------------|------------|--------------------|---------------|--|
| $M_3(C_6Se_6)_2$ | $E_{\rm form(eV)}$ | $N_{ m e}$ | $U_{ m diss-bulk}$ | $U_{ m diss}$ |  |
| Ti               | -4.14              | 2          | -1.63              | 0.44          |  |
| V                | -1.18              | 2          | -1.18              | -0.59         |  |
| Cr               | -1.09              | 2          | -0.91              | -0.37         |  |
| Mn               | -2.61              | 2          | -1.19              | 0.12          |  |
| Fe               | -1.43              | 2          | -0.45              | 0.26          |  |
| Со               | -1.63              | 2          | -0.28              | 0.53          |  |
| Ni               | -2.44              | 2          | -0.26              | 0.96          |  |
| Cu               | -1.62              | 2          | 0.34               | 1.15          |  |
| Zr               | -4.69              | 4          | -1.45              | -0.28         |  |
| Nb               | -0.87              | 3          | -1.1               | -0.81         |  |
| Mo               | 1.88               | 3          | -0.2               | -0.83         |  |
| Ru               | -0.44              | 2          | 0.46               | 0.68          |  |
| Rh               | -1.59              | 2          | 0.6                | 1.39          |  |
| Pd               | -2.82              | 2          | 0.95               | 2.36          |  |
| Ir               | -1.32              | 3          | 1.16               | 1.6           |  |
| Pt               | -3.52              | 2          | 1.18               | 2.94          |  |

**Table S1.** Formation energies  $(E_{form})$  of  $M_3(C_6Se_6)_2$ , the number of transferred electrons  $(N_e)$  during the process of dissolution, the standard dissolution potentials  $(U_{diss-bulk})$  of M bulk, and the calculated dissolution potentials  $(U_{diss})$  of M atoms on  $M_3(C_6Se_6)_2$ .

| 1                                                              |                  |                            | 3( 0 0)2 3 |
|----------------------------------------------------------------|------------------|----------------------------|------------|
|                                                                | Lattice constant | magnetic moments of        | $D_{ m p}$ |
| $M_3(C_6Se_6)_2$                                               | (Å)              | the MOFs ( $\mu_{\rm B}$ ) | (Å)        |
| $Mn_3(C_6Se_6)_2$                                              | 15.69            | 9.0000                     | 15.69      |
| $Fe_3(C_6Se_6)_2$                                              | 15.52            | 6.1504                     | 15.52      |
| $\operatorname{Co}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 15.41            | 3.0007                     | 15.41      |
| $Ni_3(C_6Se_6)_2$                                              | 15.37            | 0.0000                     | 15.37      |
| $Cu_3(C_6Se_6)_2$                                              | 15.42            | 0.0000                     | 15.42      |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 15.90            | 5.9992                     | 15.90      |
| $Rh_3(C_6Se_6)_2$                                              | 15.77            | 2.8837                     | 15.77      |
| $Pd_3(C_6Se_6)_2$                                              | 15.76            | 0.0000                     | 15.76      |
| $Ir_3(C_6Se_6)_2$                                              | 15.78            | 2.9270                     | 15.78      |
| $Pt_3(C_6Se_6)_2$                                              | 15.78            | 0.0000                     | 15.78      |

**Table S2.** Optimized lattice constants, magnetic moments, and pore sizes  $(D_p)$  of the  $M_3(C_6Se_6)_2$  systems.

| $M_3(C_6Se_6)$                                                 | $_2 \qquad E_{\rm ZPE} ({\rm eV})$ | $T \Delta S$ | G(eV)   |  |
|----------------------------------------------------------------|------------------------------------|--------------|---------|--|
| $Mn_3(C_6Se_6)$                                                | 2 0.33                             | 0.08         | -202.55 |  |
| $Fe_3(C_6Se_6)_2$                                              | 0.34                               | 0.11         | -199.55 |  |
| $\operatorname{Co}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.35                               | 0.10         | -195.46 |  |
| $Ni_3(C_6Se_6)_2$                                              | 0.32                               | 0.10         | -190.98 |  |
| $Cu_3(C_6Se_6)_2$                                              | 0.31                               | 0.17         | -183.85 |  |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.36                               | 0.09         | -200.60 |  |
| $Rh_3(C_6Se_6)$                                                | 0.36                               | 0.10         | -196.10 |  |
| $Pd_3(C_6Se_6)_2$                                              | 0.32                               | 0.11         | -190.10 |  |
| $Ir_3(C_6Se_6)_2$                                              | 0.37                               | 0.09         | -200.82 |  |
| $Pt_3(C_6Se_6)_2$                                              | 0.33                               | 0.15         | -194.09 |  |

Table S3. Calculated zero-point energies and Gibbs free energies of  $OH^*$  on  $M_3(C_6Se_6)_2$ .

| $M_3(C_6Se_6)_2$                                               | $E_{\rm ZPE}~({\rm eV})$ | $T\Delta S$ | $G\left(\mathrm{eV}\right)$ |
|----------------------------------------------------------------|--------------------------|-------------|-----------------------------|
| <br>$Mn_3(C_6Se_6)_2$                                          | 0.08                     | 0.05        | -202.70                     |
| $Fe_3(C_6Se_6)_2$                                              | 0.08                     | 0.05        | -198.65                     |
| $\operatorname{Co}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.06                     | 0.08        | -194.30                     |
| $Ni_3(C_6Se_6)_2$                                              | 0.08                     | 0.04        | -190.47                     |
| $Cu_3(C_6Se_6)_2$                                              | 0.02                     | 0.02        | -181.49                     |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.08                     | 0.05        | -200.38                     |
| $Rh_3(C_6Se_6)_2$                                              | 0.06                     | 0.07        | -194.92                     |
| $Pd_3(C_6Se_6)_2$                                              | 0.05                     | 0.10        | -188.05                     |
| $Ir_3(C_6Se_6)_2$                                              | 0.07                     | 0.07        | -199.94                     |
| $Pt_3(C_6Se_6)_2$                                              | 0.05                     | 0.09        | -192.30                     |

Table S4. Calculated zero-point energies and Gibbs free energies of  $O^*$  on  $M_3(C_6Se_6)_2$ .

Table S5. Calculated zero-point energies and Gibbs free energies of OOH\* on  $M_3(C_6Se_6)_2$ .

| -                                                              |                          |             |                             |
|----------------------------------------------------------------|--------------------------|-------------|-----------------------------|
| $M_3(C_6Se_6)_2$                                               | $E_{\rm ZPE}~({\rm eV})$ | $T\Delta S$ | $G\left(\mathrm{eV}\right)$ |
| $Mn_3(C_6Se_6)_2$                                              | 0.42                     | 0.23        | -199.89                     |
| $Fe_3(C_6Se_6)_2$                                              | 0.43                     | 0.20        | -195.99                     |
| $\operatorname{Co}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.42                     | 0.17        | -192.56                     |
| $Ni_3(C_6Se_6)_2$                                              | 0.42                     | 0.17        | -188.05                     |
| $Cu_3(C_6Se_6)_2$                                              | 0.43                     | 0.21        | -181.52                     |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 0.42                     | 0.20        | -197.65                     |
| $Rh_3(C_6Se_6)_2$                                              | 0.43                     | 0.18        | -193.17                     |
| $Pd_3(C_6Se_6)_2$                                              | 0.39                     | 0.20        | -187.32                     |
| $Ir_3(C_6Se_6)_2$                                              | 0.43                     | 0.18        | -197.97                     |
| $Pt_3(C_6Se_6)_2$                                              | 0.39                     | 0.20        | -191.27                     |
|                                                                |                          |             |                             |

**Table S6.** The adsorption-free energies of OH\*, O\*, and OOH\* ( $\Delta G_{OH*}$ ,  $\Delta G_{O*}$ , and  $\Delta G_{OOH*}$ ).

| -                                                              | -                             |                                                      |                                 |
|----------------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------|
| $M_3(C_6Se_6)_2$                                               | $\Delta G_{ m OH^*}({ m eV})$ | $\Delta G_{\mathrm{O}^*} \left( \mathrm{eV} \right)$ | $\Delta G_{ m OOH^*} ({ m eV})$ |
| $Mn_3(C_6Se_6)_2$                                              | 0.90                          | 0.74                                                 | 3.55                            |
| $Fe_3(C_6Se_6)_2$                                              | 0.62                          | 1.52                                                 | 4.18                            |
| $\operatorname{Co}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 1.09                          | 2.25                                                 | 3.99                            |
| $Ni_3(C_6Se_6)_2$                                              | 1.77                          | 2.27                                                 | 4.70                            |
| $Cu_3(C_6Se_6)_2$                                              | 2.02                          | 4.38                                                 | 4.35                            |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | -0.2                          | 0.01                                                 | 2.71                            |
| $Rh_3(C_6Se_6)_2$                                              | 0.94                          | 2.11                                                 | 3.87                            |
| $Pd_3(C_6Se_6)_2$                                              | 2.01                          | 4.06                                                 | 4.80                            |
| $Ir_3(C_6Se_6)_2$                                              | 0.91                          | 1.80                                                 | 3.77                            |
| $Pt_3(C_6Se_6)_2$                                              | 1.98                          | 3.77                                                 | 4.80                            |
|                                                                |                               |                                                      |                                 |

| $M_3(C_6Se_6)_2$                                               | $\Delta G_1 (\mathrm{eV})$ | $\Delta G_2 (\mathrm{eV})$ | $\Delta G_3 ({ m eV})$ | $\Delta G_4 (\mathrm{eV})$ | $\eta^{\mathrm{OER}}\left(\mathrm{V} ight)$ | $\eta^{\mathrm{ORR}}\left(\mathrm{V}\right)$ |
|----------------------------------------------------------------|----------------------------|----------------------------|------------------------|----------------------------|---------------------------------------------|----------------------------------------------|
| $Mn_3(C_6Se_6)_2$                                              | 1.37                       | 2.81                       | -0.15                  | -0.90                      | 1.58                                        | 1.38                                         |
| $Fe_3(C_6Se_6)_2$                                              | 0.74                       | 2.66                       | 0.90                   | 0.62                       | 1.43                                        | 0.61                                         |
| $Co_3(C_6Se_6)_2$                                              | 0.93                       | 1.74                       | 1.16                   | 1.09                       | 0.51                                        | 0.30                                         |
| $Ni_3(C_6Se_6)_2$                                              | 0.22                       | 2.43                       | 0.50                   | 1.77                       | 1.2                                         | 1.01                                         |
| $Cu_3(C_6Se_6)_2$                                              | 0.57                       | -0.03                      | 2.36                   | 2.02                       | 1.13                                        | 1.26                                         |
| $\operatorname{Ru}_3(\operatorname{C}_6\operatorname{Se}_6)_2$ | 2.18                       | 2.73                       | 0.22                   | -0.20                      | 1.5                                         | 1.43                                         |
| $Rh_3(C_6Se_6)_2$                                              | 1.05                       | 1.76                       | 1.18                   | 0.94                       | 0.53                                        | 0.29                                         |
| $Pd_3(C_6Se_6)_2$                                              | 0.12                       | 0.74                       | 2.04                   | 2.01                       | 0.81                                        | 1.11                                         |
| $Ir_3(C_6Se_6)_2$                                              | 1.15                       | 1.97                       | 0.89                   | 0.91                       | 0.74                                        | 0.34                                         |
| $Pt_3(C_6Se_6)_2$                                              | 0.12                       | 1.03                       | 1.79                   | 1.98                       | 0.75                                        | 1.11                                         |

**Table S7.** The free energy changes of each elementary step ( $\Delta G_1$ ,  $\Delta G_2$ ,  $\Delta G_3$ , and  $\Delta G_4$ ) and the overpotential of OER and ORR ( $\eta^{\text{OER}}$  and  $\eta^{\text{ORR}}$ ).



**Figure S1.** Energy and temperature variations of eleven 2D MOFs in AIMD simulations and their structural snapshots (top and side views) at 5ps.



**Figure S2.** The density of states diagram for  $Ti_3(C_6Se_6)_2$ .



Figure S3. Top and side view of  $M_3(C_6Se_6)_2$ .



Figure S4.  $O_2$  adsorption energy on 2D  $M_3(C_6Se_6)_2$ .



Fig S5. Schematic diagram of the reaction pathway for O<sub>2</sub> reduction.



**Figure S6.** (a)-(e) pCOHP between 4d TM centers (from Mn to Cu) and OH intermediate. The right and left sides represent the bonding and antibonding contributions, respectively.