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Appendix

1. Another derivation based on Sackur-Tetrode entropy equation

Another understanding of this point of view can start with the Sackur-Tetrode equation for the

entropy of monatomic ideal gases.

Now consider the occupation of electrons over the density of states of semiconductor absorber of

a solar cell. For solar cell under dark, the valence band of absorber would be completely occupied

and the conduction band would be empty for any temperature T. Under this condition, the entropy S

of the electrons would be zero, as there is only one possibility of producing a fully occupied valence

band and an empty conduction band. While, promoting electrons from the valence band to the

conduction band by light excitation would then lead to not only an increase in the energy, but also

an increase in the entropy as well. This is because there are now many possibilities for removing an

electron from any of about 1022 states/cm3 of the valence band and exciting it to any of 1022

states/cm3 of the conduction band.

In 1912, Sackur and Tetrode independently put forward an equation for the absolute entropy of a

monoatomic classical ideal gas, which is known as the Sackur-Tetrode equation. This is a

pioneering investigation about 100 years ago which incorporates quantum considerations. This

entropy S at temperature T can be written as[1]:
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where N is the number of particles in the gas, kB is Boltzmann’s constant, V is the volume of the gas,

m is the mass of a gas particle and h is Planck’s constant. Obviously, σ represents the (average)

entropy of a single particle in the gas.

In solar cell, light excitation produces electrons in conduction band (CB) and holes in valence

band (VB), which relax almost instantaneously (on the submillisecond time scale) to the conduction

band minimum (CBM) and the valence band maximum (VBM) and to reach thermal equilibrium

with the lattice semiconductor. A large number of such excited electrons form electron gas, which

can be seen as ideal monoatomic gas.

Appling the Sackur-Tetrode equation to the electron gas and accounting for the fact that electrons

(and holes) have two spin orientations, which doubles the number of possible states, for

electrons/holes in a semiconductor, the equation is modified to:
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where n = N/V is the spatial density of electron and m is replaced be m* of a semiconductor.

According to the equation 6, equation 31 can be re-written as:
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Obviously, the only difference (5/2kB) of the equation s3 and 19 is the terms on the right. Note that

the Boltzmann constant kB ≈1.38×10-23 J/K, while the calculated average entropy of a single carrier

as given in Figure 3c is on the order of 10-20 J/K, almost a thousand times that of kB. Therefore, in

equation s3, compared with the second term on the right, the first term can be ignored. This leads

to:
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This means that, the Sackur-Tetrode entropy of equation s2 and s3 is in fact the average entropy

of a single carrier that we derived above, equation 19.

It has been proved that each conduction band electron (hole) in this gas has a mean kinetic energy

of 3/2kBT and volume energy kBT (= pv) with the potential energy EC (-EV) as well as an entropy σe/h.

The free energy or electrochemical potential μe/h of an excited state electron (hole) is the sum of

these terms minus the entropy σe/h per charge carrier:
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Substituting the effective mass m* of the electrons (holes) and effective density of states of the

energy band from equation 16 for m we find:
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Thus, we have:
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This result, obtained directly from entropy analysis of electron gas, is consistent with equation 5.

2. On the derivation of equation 15

In the main text, for equation 15
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we simply make the following treatment:

the term
nN

NN


ln is approximately equal to 0, as N >>n and then N - n ≈ N.

Considering that when x→0, ln (1+x) should approach x: ln (1+x) → x. Thus, a more accurate

process of the above equation should be:
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Considering ln (1+x) → x, when x → 0, we should have:

n
N
nN

N
nN

nN
nN

nN
nNN

nN
NN 






 















1ln1lnn)(lnln

(s9)

Then equation s9 should be:

B Bln 1 lnN NS k n n nk
n n

          
   

(s9’)

And thus the entropy changes of excited n electrons and p holes are:
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Accordingly, the average entropy per electron/hole becomes:
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However, careful examination shows that n/N does not approaches 0, as n and N are both finite (n

is about 1014 - 1016 cm-3 and N is about 1017 - 1022 cm-3). Therefore, although the treatment of

equation s9 seems more accurate than that of equation 16, it is not strictly true in mathematics and

is also an approximate treatment just as what we have done in the main text.

In order to further quantitatively demonstrate under what conditions our approximate treatment is

more accurate and how reliable our approximate treatment is, we have calculated the specific values

of
nN

NN


ln and
n
nNn ln with different DOS (N) and under varying excitation intensity (n).

The specific results are presented in Table S1.
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Table S1. Values for
nN

NN


ln and
n
nNn ln with different DOS (N) and under varying

excitation intensity (n).

n N 1018 1020 1022

1016 ~1016

~3×2.3×1016

~1016

~4×2.3×1016

~1016

~6×2.3×1016

1014 ~1014

~4×2.3×1014

~1014

~6×2.3×1014

~1014

~8×2.3×1014

1012 ~1012

~6×2.3×1012

~1012

~8×2.3×1012

~1012

~10×2.3×1012

1010 ~1010

~8×2.3×1010

~1010

~10×2.3×1010

~1010

~12×2.3×1010

Note: Values in green stands for
nN

NN


ln and values in red stands for
n
nNn ln

.
They all

represent the number of possible microscopic states (Ω) of the thermodynamic system of

photogenerated carriers in solar cells.

From Table S1, we can see that
nN

NN


ln are always smaller than
n
nNn ln with different

DOS (N) and under varying excitation intensity (n). Moreover,
nN

NN


ln can be neglected (this

is what we have done in this work) in contrast to
n
nNn ln when N is as large and n is as small as

possible (lower right corner of the table). This implies that when calculating the total number of

possible microscopic states (Ω) of the thermodynamic system of photogenerated carriers in solar

cells,
nN

NN


ln can be neglected compared with
n
nNn ln

.

Above discussions suggest that our theory is more accurate for solar cell based on semiconductor

with large DOS under weak illumination (lower right corner of the table). While, as a simple
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approximation, our theory in the present work is fairly reliable.
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