SUPPORTING INFORMATION

Structural Stability, Dihydrogen Bonding, and Pressure-Induced Polymorphic Transformations in Hydrazine Borane

Rongfeng Guan,^{ab} Pan Wang,^a Yujin Ji,*^b Youyong Li,^{bc} and Yang Song*^{ac}

^aDepartment of Chemistry, The University of western Ontario, London, Ontario, N6A 5B7, Canada ^bInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China ^cSoochow University – Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, London, ON N6A 5B7, Canada

Contents

Fig. S1. Calculated XRD patterns in comparison with experimental results under ambient conditions using Rietveld refinements.

Fig. S2. Selected IR spectra of $N_2H_4BH_3$ collected at room temperature on compression in the region of 630–3400 cm⁻¹.

Fig. S3. Selected Raman spectra of $N_2H_4BH_3$ collected at room temperature on compression in the region of 50–3400 cm⁻¹.

Fig S4. The N-H...H and H...H-B angles versus pressure in phase I, phase II, and phase III.

Table S1. Assignments and vibrational frequencies (cm⁻¹) of N₂H₄BH₃ at ambient pressure.

Table S2. The pressure dependence of characteristic IR modes of HB on compression.

Table S3. The pressure dependence of characteristic Raman modes of HB on compression.

Table S4. Refined cell parameters of N₂H₄BH₃ at presentative pressures.

Table S5. Crystal structures, cell parameters and Wyckoff positions for the unit cells of the Phase I, phase II and phase III of $N_2H_4BH_3$ optimized at ambient pressure.

Table S6. Crystal structures, cell parameters and Wyckoff positions for the unit cells of the top-ranked candidate structures of $N_2H_4BH_3$ optimized at ambient pressure.

Fig. S1. Calculated XRD patterns in comparison with experimental results under ambient conditions using Rietveld refinements.

Fig. S2. Selected IR spectra of $N_2H_4BH_3$ collected at room temperature on compression in the region of 630–3400 cm⁻¹. The pressures in GPa are labeled for each spectrum and the assignments are labeled for selected IR modes.

Fig. S3. Selected Raman spectra of $N_2H_4BH_3$ collected at room temperature on compression in the region of 5–3400 cm⁻¹. The pressures in GPa are labeled for each spectrum and the assignments are labeled for selected Raman modes.

Figure S4. The N-H...H and H...H-B angles versus pressure in phase I (a) (b), phase II (c) (d), and phase III (e) (f).

	$IR (cm^{-1})$	Raman (cm ⁻¹)
		81
		107
Lattice modes		156
		178
		330
	749	749
B-N stretching	755	773
N–N stretching	913	907
N II 1'	987	992
N-H rocking	1050	1053
	1155	1137
B–H bending	1183	1178
	1260	1269
N. II. handing	1337	1341
N-H bending	1436	1444
	1591	1594
N-H asymmetric bending	1622	1623
	2271	2272
D. H. strotching	2300	2303
B-n stretching	2376	2373
	2398	2399
	3168	3170
N. II stustshing	3223	3216
м-п stretcning	3268	3269
	3333	3334

Table S1. Assignments and vibrational frequencies (cm^{-1}) of $N_2H_4BH_3$ at ambient pressure.

Assignment	Frequency (cm ⁻¹)	$dv/dp (cm^{-1} \cdot GPa^{-1})$
N-N stretching	913	4.6
N-H rocking	986	3.3
	1133	0.4
B-N bending	1156	4.3
	1260	1.5
N-H bending	1337	4.2
	1436	1.3
N-H asym. bending	1591	-0.8
B-H stretching	2271	5.6
N-H stretching	3268	3.0

Table S2. The pressure dependence of characteristic IR modes of HB on compression.

Assignment	Frequency (cm ⁻¹)	$dv/dp (cm^{-1} \cdot GPa^{-1})$
Lattice modes	84	6.8
Lattice modes –	288	5.7
	425	3.7
D. N. stretching	752	6.1
B-N stretching —	783	9.4
N-N stretching ——	909	4.3
	920	6.2
N-H rocking	994	3.6
B-H stretching	2277	8.7
N-H stretching	3269	1.9

Table S3. The pressure dependence of characteristic Raman modes of HB on compression.

Pressure (GPa)	a (Å)	b (Å)	c (Å)	V (Å ³)
0.82	13.000	4.947	9.451	607.9
1.53	12.981	4.905	9.429	600.4
1.88	12.951	4.867	9.399	592.5
2.47	12.863	4.810	9.339	577.8
3.39	12.765	4.712	9.265	557.3
3.89	12.741	4.689	9.246	552.4
4.45	12.696	4.668	9.249	548.2
5.32	12.623	4.620	9.191	535.9
6.28	12.473	4.569	9.086	517.8
7.22	12.397	4.534	9.008	506.3
8.52	12.294	4.493	8.922	492.8
10.41	12.175	4.401	8.922	478.1
12.50	11.985	4.368	8.662	453.4
16.50	11.798	4.317	8.529	434.4
19.86	11.663	4.287	8.445	422.3

Table S4. Refined cell parameters and volume^a of N₂H₄BH₃ at selected pressures.

a. The uncertainties of all unit cell parameters from refinement are less than 0.003 Å and less than 0.7

Å³ for unit cell volume.

Table S5. Crystal structures, cell parameters (a, b, c in Å; α , β , γ in degrees) and Wyckoff positions for the unit cells of the phase I, phase II and phase III of N₂H₄BH₃ optimized at ambient pressure.

phase I-Pbcn

phase II-Pbca

phase III-Pccn (A)

<i>a</i> , <i>b</i> , <i>c</i>	12.355	5.326	9.787
α, β, γ	90.000	90.000	90.000
H(8 <i>d</i>)	0.9764	0.2819	0.3979
H(8 <i>d</i>)	0.9112	-0.0579	0.3588
H(8 <i>d</i>)	0.8206	0.2563	0.3402
H(8 <i>d</i>)	0.7883	0.0219	0.5695
H(8 <i>d</i>)	0.9217	0.0288	0.6085
H(8 <i>d</i>)	0.8363	0.3379	0.7269
H(8 <i>d</i>)	0.9091	0.4762	0.6048
B(8 <i>d</i>)	0.8938	0.1543	0.4014
N(8 <i>d</i>)	0.8609	0.1256	0.5572
N(8 <i>d</i>)	0.8413	0.3667	0.6226

<i>a</i> , <i>b</i> , <i>c</i>	12.359	5.351	9.711
α, β, γ	90.000	90.000	90.000
H(8c)	0.9783	0.4838	0.8528
H(8c)	0.9079	0.8159	0.8896
H(8c)	0.8222	0.4959	0.9112
H(8 <i>c</i>)	0.7849	0.7228	0.6806
H(8c)	0.9168	0.7269	0.6382
H(8c)	0.8332	0.4120	0.5220
H(8c)	0.9131	0.2821	0.6400
B(8 <i>c</i>)	0.8937	0.6024	0.8486
N(8c)	0.8590	0.6245	0.6919
N(8c)	0.8423	0.3827	0.6267

a, b, c	8.854	14.072	5.051
α, β, γ	90.000	90.000	90.000
H(8 <i>e</i>)	1.1835	0.5344	0.3333
H(8 <i>e</i>)	1.1406	0.6693	0.2208
H(8 <i>e</i>)	0.9757	0.5716	0.1998
H(8 <i>e</i>)	1.0141	0.5585	0.7163
H(8 <i>e</i>)	1.1270	0.6517	0.7180
H(8 <i>e</i>)	0.9124	0.7317	0.4900
H(8 <i>e</i>)	0.8151	0.6400	0.6014
B(8 <i>e</i>)	1.0887	0.5971	0.3199
N(8 <i>e</i>)	1.0385	0.6210	0.6144
N(8 <i>e</i>)	0.9065	0.6828	0.6455

Table S6. Crystal structures, cell parameters (a, b, c in Å; α , β , γ in degrees) and Wyckoff positions for the unit cells of the top-ranked candidate structures of N₂H₄BH₃ optimized at ambient pressure.

<i>a</i> , <i>b</i> , <i>c</i>	11.004	8.820	7.662
α, β, γ	90.000	90.000	90.000
H(8 <i>e</i>)	1.2209	0.4374	0.2232
H(8 <i>e</i>)	1.1779	0.4395	0.4798
H(8 <i>e</i>)	1.0608	0.5222	0.3028
H(8 <i>e</i>)	1.0434	0.2594	0.1793
H(8 <i>e</i>)	1.1409	0.1818	0.3230
H(8 <i>e</i>)	0.9322	0.3423	0.4411
H(8 <i>e</i>)	0.9267	0.1568	0.3891
B(8 <i>e</i>)	1.1402	0.4289	0.3313
N(8 <i>e</i>)	1.0775	0.2679	0.3078
N(8 <i>e</i>)	0.9817	0.2428	0.4363

a, b, c	15.408	8.213	5.187
α, β, γ	90.000	90.000	90.000
H(8f)	0.9288	0.1663	0.0642
H(8f)	0.8216	0.3054	0.0302
H(8f)	0.8105	0.0688	0.1269
H(8f)	0.7978	0.2619	0.5082
H(8f)	0.8805	0.1397	0.5491
H(8f)	0.9775	0.3356	0.4796
H(8f)	0.9047	0.4613	0.3551
B(8f)	0.8549	0.1901	0.1422
N(8f)	0.8598	0.2375	0.4386
N(8f)	0.9146	0.3777	0.5035

<i>a</i> , <i>b</i> , <i>c</i>	18.602	5.764	7.209
α, β, γ	90.000	90.000	90.000
H(4 <i>c</i>)	0.2055	0.4693	0.7313
H(4 <i>c</i>)	0.1089	0.5706	0.8281
H(4 <i>c</i>)	0.1982	0.7581	0.8877
H(4 <i>c</i>)	0.2045	0.8554	0.5486
H(4 <i>c</i>)	0.1404	0.6722	0.4837
H(4 <i>c</i>)	0.1258	1.1208	0.5776
H(4 <i>c</i>)	0.0825	0.9630	0.7374
H(4 <i>c</i>)	0.7050	0.0770	0.9857
H(4 <i>c</i>)	0.6813	0.1900	0.7286
H(4 <i>c</i>)	0.6017	0.1201	0.9122
H(4 <i>c</i>)	0.6521	0.4497	1.1076
H(4 <i>c</i>)	0.7166	0.5184	0.9497
H(4 <i>c</i>)	0.5676	0.5283	0.8736
H(4 <i>c</i>)	0.6188	0.7634	0.9144
B(4 <i>c</i>)	0.1681	0.6347	0.7741
B(4 <i>c</i>)	0.6635	0.1894	0.8900
N(4 <i>c</i>)	0.1559	0.7823	0.5906
N(4 <i>c</i>)	0.1011	0.9637	0.6026
N(4 <i>c</i>)	0.6657	0.4480	0.9654
N(4 <i>c</i>)	0.6183	0.5978	0.8582