Supporting Information for: From the single-atom limit to the mixed-metal phase: Finding the optimum condition for activating the basal plane of a FePSe₃ monolayer towards HER

Megha and Prasenjit Sen^*

Harish-Chandra Research Institute, a CI of HBNI, Chhatnag Road, Jhunsi, Prayagraj

211019, India

E-mail: prasen@hri.res.in

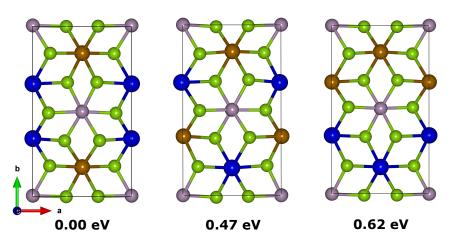


Figure S1: Optimized structures of $FeTcP_2Se_6$ monolayer. The number given below the structures denote the relative energies with respect to the most stable configuration.

System	a (Å)							
Pristine	6.28							
3d–TM								
Sc-FePSe ₃	6.34							
$Ti-FePSe_3$	6.30							
$V-FePSe_3$	6.29							
$Cr-FePSe_3$	6.29							
Mn-FePSe ₃	6.30							
$Co-FePSe_3$	6.29							
Ni-FePSe ₃	6.24							
Cu -Fe PSe_3	6.25							
Zn - $FePSe_3$	6.27							
4d-TM	1							
Y-FePSe ₃	6.39							
Zr-FePSe ₃	6.32							
$Nb-FePSe_3$	6.33							
Mo-FePSe ₃	6.29							
$Tc-FePSe_3$	6.30							
Ru - $FePSe_3$	6.24							
Rh -Fe PSe_3	6.24							
$Pd-FePSe_3$	6.26							
$Ag-FePSe_3$	6.28							
Cd - $FePSe_3$	6.32							

Table S1: Lattice parameter of pristine and TM-doped (25%) FePSe₃ monolayers.

Table S2: Variation of ΔG_{H^*} (in eV) on 6.25% Sc doped FePSe₃ monolayer with applied biaxial tensile strain.

% Strain	Site							
	P2	Se3	P1	P3	Se5	Se6	Se7	Se8
0	0.35	1.08	0.38	0.35	1.59	0.66	1.19	1.29
1	0.30	0.92	0.42	0.32	1.02	0.64	1.05	1.16
2	0.21	0.49	0.32	0.24	0.61	0.48	0.58	0.64
3	0.23	0.35	0.31	0.29	0.52	0.48	0.59	0.56
4	0.20	0.22	0.21	0.24	0.42	0.37	0.39	0.40
5	0.14	-0.05	0.18	0.18	0.27	0.23	0.19	0.13

HER pathways

The Volmer-Heyrovsky pathway involves the following two reaction steps:

- (1) $2H^+ + 2e^- + * \longrightarrow H^+ + e^- + H^*$
- $(2) H^+ + e^- + H^* \longrightarrow H_2(g) + *.$

The free energy changes at these intermediate steps at a finite bias and zero pH can be expressed as ΔG_1 and ΔG_2 , which are defined as follows.

$$\Delta G_1 = G(H^+ + e^-) + G(H^*) - G(2H^+ + 2e^-) - G(*) = \Delta G_{H^*} + eU,$$

and

$$\Delta G_2 = G(H_2(g)) + G(*) - G(H^+ + e^-) - G(H^*) = -\Delta G_{H^*} + eU.$$

The values of ΔG_1 and ΔG_2 depend on ΔG_{H^*} , the applied bias (U) with respect to the reversible hydrogen electrode (RHE), and the electric charge (e).

Another pathway is Volmer–Tafel pathway, in which the intermediate reaction steps are:

- (1) $2H^+ + 2e^- + * \longrightarrow H^+ + e^- + H^*$
- (2) $\mathrm{H^+} + \mathrm{e^-} + \mathrm{H^*} \longrightarrow \mathrm{H'^*H^*}$
- (3) $H'^*H^* \longrightarrow H_2(g) + *.$

H^{*} indicates the first H adsorbed at a particular site, and H^{'*} is the second H which gets adsorbed at a neighbouring site in the presence of first adsorbed H. Free energy changes for these intermediate steps can be written as follows:

$$\Delta G_1 = \Delta G_{H^*} + eU,$$

$$\Delta G_2 = \Delta G_{H^{\prime *}} + eU,$$

and

$$\Delta G_3 = \Delta G(H'^*H^*) - G(*) - G(H_2(g)) = -\Delta G_{H^*} - \Delta G_{H'^*}.$$

Here, ΔG_{H^*} is the adsorption free energy of the first H and $\Delta G_{H^{*}}$ is the adsorption free energy of the second H at the neighbouring site in presence of the first adsorbed H.

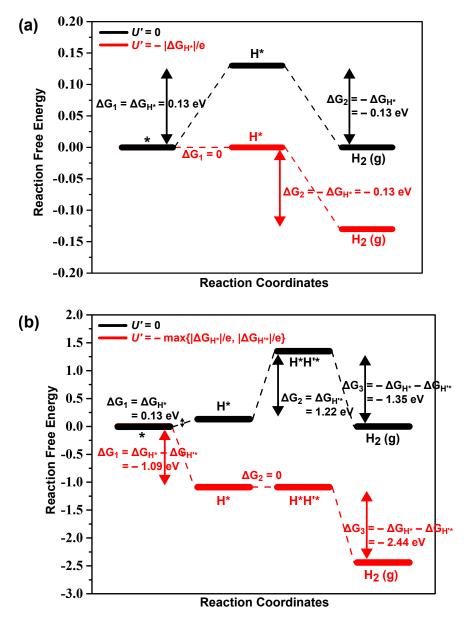


Figure S2: (a) Volmer-Heyrovsky and (b) Volmer-Tafel reaction pathways for the most active site of 25% Tc doped FePSe₃ monolayer.

	2	25%		12.5%		25%
System	M _{total}	M_{dopant}	$M_{\rm total}$	$M_{\rm dopant}$	$M_{\rm total}$	$M_{\rm dopant}$
$Sc-FePSe_3$	-3.78	-0.10	-3.10	0.06	-3.07	0.05
Ti - $FePSe_3$	-2.01	1.68				
$V-FePSe_3$	-1.00	2.79				
$\operatorname{Cr-FePSe}_3$	0.01	3.83				
Mn-FePSe ₃	0.86	4.47				
FePSe_3	0.00	3.53				
$\operatorname{Co-FePSe}_3$	-2.73	1.13				
Ni -Fe PSe_3	-2.03	1.30				
Cu-FePSe ₃	-3.01	0.24				
Zn - $FePSe_3$	-3.77	0.00				
$Y-FePSe_3$	-3.79	-0.03	-3.11	0.03	-3.08	0.02
$\operatorname{Zr-FePSe}_3$	-3.79	0.24	-3.74	-0.21	-2.48	0.62
$Nb-FePSe_3$	-0.89	2.69				
$Mo-FePSe_3$	-1.66	2.40	-1.72	2.32	-1.71	2.36
Tc-FePSe_3	-0.94	2.69	-0.92	2.74	-0.92	2.74
$\operatorname{Ru-FePSe}_3$	-3.77	-0.03				
$\operatorname{Rh-FePSe}_3$	-2.90	0.66	-2.90	0.68	-2.90	0.69
Pd - $FePSe_3$	-2.20	0.83				
$Ag-FePSe_3$	-3.02	0.08				
Cd-FePSe ₃	-3.77	0.00				

Table S3: Total magnetic moment (M_{total}) and magnetic moment of each dopant atom (M_{dopant}) in pristine and TM-FePSe₃ monolayers at different doping concentrations. Fe with \uparrow -spin is replaced by another TM atom.

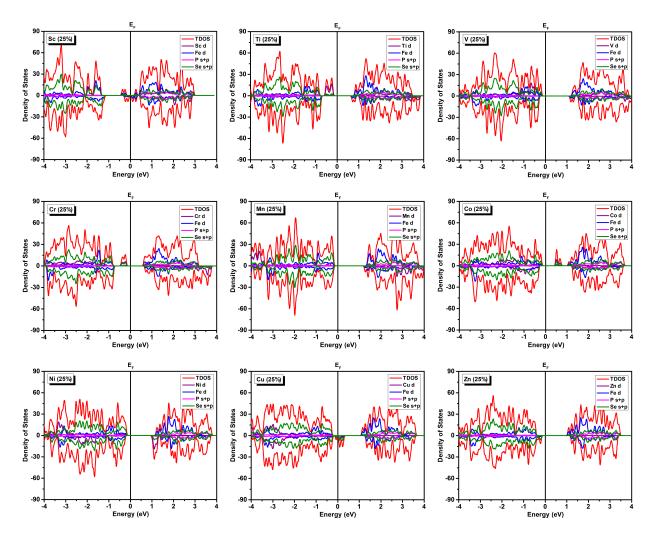


Figure S3: Total as well as the partial DOS of 3d TM-doped $FePSe_3$ monolayer with 25% doping concentration. E_F denotes the Fermi energy and is represented by a black colored solid vertical line.

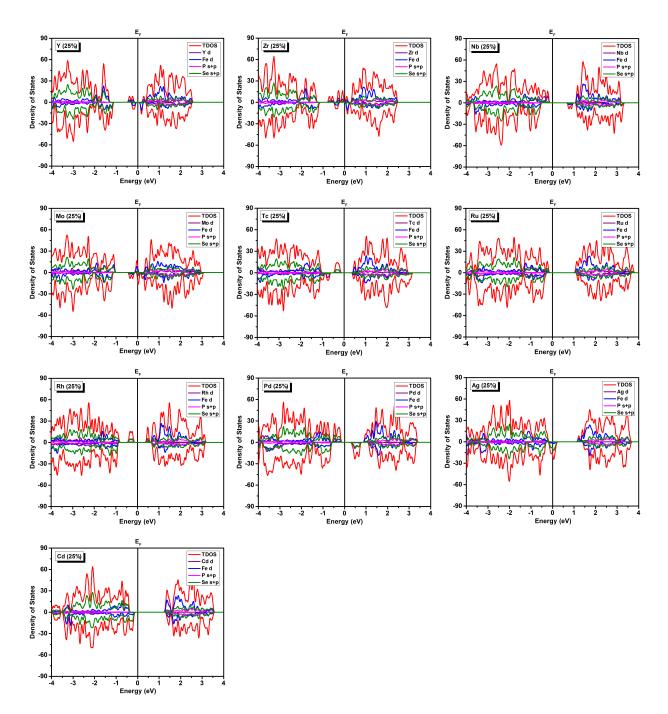


Figure S4: Total as well as the partial DOS of 4d TM-doped FePSe₃ monolayer with 25% doping concentration. E_F denotes the Fermi energy and is represented by a black colored solid vertical line.