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Section Ⅰ Convergence test of plane-wave cutoff and k-point mesh

Convergence test of plane-wave cutoff and k-point mesh were performed to ensure 

the accuracy of the calculation as shown in Fig. S1. From Fig. S1, the plane-wave cutoff 

used for bulk, surface and interface calculation can be set as 400 eV. K-point mesh of 

7×7×7, 5×5×5 was used for calculations of bulk Fe and diamond, respectively. K-point 

mesh of 7×7×1, 5×5×1 was used for calculations of Fe and diamond surface, 

respectively. k-point mesh of 7×7×1 was used for all interfaces.

Fig. S1 Convergence test of plane-wave cutoff and k-point mesh for diamond and Fe. (a) and (b) 
are convergence test of plane-wave cutoff and k-point mesh for diamond, respectively. (c) and (d) 
are those for Fe.



Section Ⅱ Structural stability of bulk diamond and γ-Fe 

Fig. S2 shows that bulk structures of diamond and γ-Fe. From Fig. S2 (a), the 

diamond crystal can be described as two inter-penetrating face-centered-cubic (FCC) 

structures with relative shifting of [111], which belongs to the space group Fd-3m 1
4

(227). The lattice constant after relaxation is a = 3.574 Å, which is basically consistent 

with the experimental value (a = 3.567 Å) in ref. [1] and the simulated value (a = 3.577 

Å) in ref. [2]. From Fig. S2 (b), γ-Fe with the face centered cubic structure is used in 

this work, which belongs to the space group Fm-3m. The relaxed lattice constant is a = 

3.637 Å, which is basically consistent with the measured value (a = 3.645 Å) in ref. [3] 

and the calculated value (a = 3.474 Å) in ref. [4].

Fig. S2 Bulk structures of (a) diamond and (b) γ-Fe.

In order to verify the dynamic stability of diamond and Fe structures used and 

reflect their bonding strength, the VASP with the PHONOPY package was applied to 

calculate the phonon dispersion curves and the harmonic second-order interatomic 

force constants (IFC) by the density functional perturbation theory (DFPT) method for 

2×2×2 supercell. The IFC tensor is defined as follow:
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where E and R are the potential energy and atomic displacement, respectively.

The traces of IFC tensors between one atom chosen as the origin and another atom 

was normalized by the trace of the self-interaction IFC tensor of the origin atom. 

Related formula [5] are as follows:
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where R0 and Rn denotes the displacement of the origin atom and the n-th neighbor 

atom, respectively.

Phonon dispersion curves of diamond and γ-Fe and their normalized trace of IFC 

versus atomic distances are shown in Fig. S3. From Fig. S3 (a) and (b), there is no 

imaginary frequency modes in the Brillouin zone for diamond and γ-Fe we used, which 

indicates that diamond and γ-Fe are all dynamically stable. Fig. S3 (c) shows the 

bonding state between the central atom and its neighboring atoms in diamond and Fe 

structures. From Fig. S3 (c), for diamond structure, it is obvious that an anomalous 

nonmonotonic trend of the IFCs, which indicates that the monotonic decay of 

interaction strength versus distance. While for γ-Fe structure, large long-range 

interactions are present at specific neighboring shells, e.g. the second and fourth nearest 



neighbor. In addition, fifth-nearest neighbors have even positive force constants, giving 

them the behavior of “anti-springs”.

Fig. S3 Phonon dispersion curves of diamond and γ-Fe and their normalized trace of IFC versus 
atomic distances. (a) and (b) are phonon dispersion curves of diamond and γ-Fe, respectively. (c) is 
their normalized trace of IFC versus atomic distances. The element in the parenthesis indicates the 
interaction between the corresponding atom and other atoms in (c).

Section Ⅲ Electronic structure of diamond and Fe

The electron localization function (ELF) [6-8] essentially is an indicator of 

measuring electron localization degree in local region, which is applied to reflect 

electronic localized states of diamond and Fe structures. It can be defined as follows:
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where  and  denote orbital wavefunction and orbital occupation number, 

respectively;  corresponds to electron density, r is position vector. ELF is a uniquely 

defined dimensionless quantity, and only takes values in the range between 0 and 1, 

where 1 refers to the fully localized electrons, and 0.5 corresponds to fully delocalized 

electrons, while 0 represents very low charge density.

Fig. S4 shows that electron localization function (ELF) for diamond and γ-Fe. A 

strong electron localization is found in diamond structure (as shown in Fig. S4 (a) and 



(c)), which indicates that diamond is a covalent material with strong bonding. While, 

there is basically no electron localization in Fe structure (see Fig. S4 (b) and (d)), which 

shows that γ-Fe is a material with weak metal bond.

Fig. S4 Electron localization function (ELF) for diamond and γ-Fe. (a) and (b) are iso-surface at 
ELF levels of 0.85 and 0.18 for diamond and γ-Fe, respectively. (c) and (d) are 2D slices (correspond 
(110) plane) for diamond and γ-Fe, respectively.

Fig. S5 shows electronic band structures along the high symmetry directions in 

the first Brillouin zone and Fermi surfaces of diamond and γ-Fe. Diamond is an 

insulator with direct band gap of 4.58 eV, which is basically consistent with the 

measured value (5.55 eV) in ref. [9] and the calculated value (4.15 eV) in ref. [10] as 

shown in Fig. S5 (a). For the band structures of γ-Fe structure as shown in Fig. S5 (b) 

and (c), it is obvious that the valence bands pass through the Fermi level (EF) and 

overlap the conduction bands, which suggests an electron-conducting behavior. Fermi 

surfaces as shown in Fig. S5 (c) and (d) are also investigated to facilitate the 

understanding of the physical properties of γ-Fe structure, which is called ‘‘the face of 



metal’’ [11] and strongly affects the properties of metals because it is the most active 

region in reciprocal space. The Fermi level is the boundary between the occupied state 

and the unoccupied state of the electron. In the three-dimensional reciprocal space, the 

Fermi level is the surface of the energy EF in the K space [12]. Fermi surface is drawn 

by software FermiSurfer [13]. From Fig. S5 (c) and (d), it can be found that the Fermi 

surface was compatible with a tight-binding energy band for γ-Fe lattice, which is with 

the characteristic of Fermi surface for fcc metal.

Fig. S5 Electronic band structures and Fermi surfaces of diamond and γ-Fe. (a) and (b) are electronic 
band structure of diamond and γ-Fe. (c) and (d) are Fermi surface and corresponding section of γ-
Fe, respectively. the Fermi energy is set as zero point (0.0 eV).



Section Ⅳ Electronic property of diamond and Fe surface

The work function is defined as the minimum amount of energy required to move 

an electron from the interior of the solid to vacuum far away from the surface of 

materials, which can reflect the strength of the electron binding ability. Work function 

Ф [34, 35] is defined as follows:

                          (18)vac = FE E 

where Evac is the energy of a stationary electron in the vacuum nearby the surface. EF 

determines the ground state electronic structure calculation. Calculated work functions 

for diamond and Fe surfaces are shown in Fig. S6. From Fig. S6, work functions of all 

diamond surfaces are larger than those of γ-Fe surfaces. Meanwhile, it is worth noting 

that work functions of low-index surfaces for diamond and Fe are different, which 

exhibits anisotropy of the work function for diamond and γ-Fe. What is more, it should 

be pointed out that our calculated results for diamond and γ-Fe are in good agreement 

with those in other literatures [36-39].



Fig. S6 Calculated work functions for diamond and γ-Fe surfaces. (a), (b) and (c) are calculated 
work functions of (100), (110) and (111) surfaces for diamond, respectively. (d), (e) and (f) are 
those for Fe. The green and blue dashed lines denote Fermi level and the vacuum energy level, 
respectively.

Section Ⅴ Mechanical property of bulk diamond and Fe

The elastic properties were calculated using energy-strain method [14, 15]. The 

internal energy of a crystal under strain ε can be represented by Taylor expansion in 

power of the strain tensor. Related equation is as follows:
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where  and  are the energy and volume of the reference structure (usually 0( ,0)E V 0V

the equilibrium one), respectively.

For diamond and Fe structures, which belongs to cubic system, there are only three 

independent elastic constants (i.e. C11, C12 and C44). The three Born stability criteria 

[16] for the cubic system are adopted to verify the mechanical stability of the C-



Nonmetal models. The related criteria are as follows:
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Meanwhile, the Voigt-Reuss-Hill approximations [17-19] were also used to 

calculate the elastic modulus of diamond and γ-Fe including bulk modulus (B), shear 

modulus (G), Young's modulus (E) and Poisson's ratio (ν). The relevant equations are 

given in equation (4)-(8). In cubic crystal, there are only 3 independent variables as 

equation (9).

             (8)9 3, , ,
2 2 3 6

V R V RB B G G BG B EB G E
B G B

  
   



                 (9)11 22 33 12 13 23[( ) 2( )] / 9VB C C C C C C     

                  (10)11 22 33 12 13 231 / [( ) 2( )]RB S S S S S S     

           (11)11 22 33 12 13 23 44 55 66[( ) 3( )] / 15VG C C C C C C C C C        

           (12)11 22 33 12 13 23 44 55 6615 / [4( ) 3( )]RG S S S S S S S S S        

                 (13)11 22 33 12 13 23 44 55 66,  ,  C C C C C C C C C     

The elastic constants of diamond and γ-Fe meet the three Born stability criteria, 

whose detailed data are listed in Table S1, which indicates that there is mechanical 

stability for diamond and γ-Fe structures. Meanwhile, our calculated results are in good 

agreement with the experimental and other theoretical values [20-23] for diamond 

structure. It is worth noting that calculated results for Fe are closer to the experimental 

results than other calculated values [24-27]. In addition, it is obvious that the B, G and 

E of diamond are all larger than those of Fe. While, the ν of γ-Fe is higher than that of 

diamond, which shows that the transverse deformation ability of γ-Fe is stronger than 

that of diamond. In order to quantitatively compare the brittleness of diamond and γ-Fe, 



the ratio of the shear modulus to the bulk modulus, i.e. Pugh ratio (G/B) [28] was 

calculated.  In generally, if G/B < 0.57, the material is ductile, otherwise, the material 

behaves in a brittle. It is worth noting that the larger G/B is, the more brittleness of the 

material is. Pugh ratio of diamond is 1.195 (>0.57) and that of Fe is 0.741 (>0.57), 

which suggests that diamond and γ--Fe structures we used are all brittle materials while 

the brittleness of diamond is much higher than that of γ-Fe.

Table S1 Comparison of experimental and theoretical second order elastic constants of diamond 
and γ-Fe

System C11/GPa C12/GPa C44/GPa B/GPa G/GPa E/GPa ʋ
diamond

This work 1050.21 125.32 559.35 433.62 518.34 1111.95 0.07
Theorya 1053 125 560 434.33 519.40 1114.10 0.07
Theorya 1105.6 149.4 592.6 468.13 543.80 1176.02 0.08
Theoryb 1054 124 559 432.00 519.29 1113.69 0.07
Exper.c 1080.4 127.0 5342 444.80 510.47 1107.68 0.08
Exper.d 1079.26 126.73 578.16 444.24 534.99 1141.56 0.07
fcc-Fe

This work 260.56 99.03 142.20 152.87 113.32 272.61 0.20
Theorye 540 120 260 260 239.7 548.30 0.15
Exper.f 154 143.9 78.4 147.27 31.79 88.96 0.40
Exper.g 181 156 83.3 164.33 40.24 111.62 0.39
Exper.h 154 122 77 132.67 41.55 112.86 0.36

a Ref[20], b Ref[21], c Ref[22], d Ref[23], e Ref[24], f Ref[25], g Ref[26], h Ref[27]

Two different models (Chen’s model and Tian’s model) were employed to reflect 

the intrinsic hardness HV of diamond and γ-Fe structure. The related expressions [29-

30] are as follows:

                       (14)2 0.5852( ) 3Chen
VH k G 

                       (15)1.137 0.7080.92Tian
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where k is equal to B/G. The  and  of diamond are 92.45 and 94.16 GPa henC
VH Tian

VH

while those of γ-Fe are 19.42 and 18.64 GPa, which shows that the hardness of diamond 

is much larger than that of Fe.



Based on the obtained elastic constants, key quantities (Young's modulus (E), 

Linear compressibility (LC), Shear modulus (G) and Poisson's ratio (ʋ) as shown in 

Fig. S7) were investigated to characterize the mechanical behavior of the crystal in the 

elastic range. It is worth mentioning that Young's modulus and Linear compressibility 

(LC) are functions of a single unit vector a: E(a) and LC(a) and a is fully characterized 

by the angles θ (0, π) and φ (0, 2π). However, the shear modulus G and Poisson’s ratio 

ʋ are not as straightforward to represent, because they depend on two orthogonal unit 

vectors a and b (respectively the direction of the stress applied and the direction of 

measurement). Herein, another unit vector b is defined, which is perpendicular to the 

first unit vector a and characterized by the angle χ (0, 2π). Detailed diagram and 

definitions of angles used to describe directions are shown in Fig. S8. The coordinates 

of the two vectors a and b [31] are defined as:
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Fig. S7 Scheme of the directional elastic properties calculated in this work. For each, large red 
arrows represent the direction of applied stress and smaller blue arrows the direction along which 
the resulting strain is measured.



Fig. S8 Definitions of angles used to describe directions. (a) is definition of primary and secondary 
orientations in crystal coordinate system. (b) is the relation between orientations and specimen 
geometry. a, b, θ, φ, χ are the unit vector along primary orientation, the unit vector along secondary 
orientation, the polar angle (φ), the azimuth angle and the angle between b and line projected from 
a on horizontal plane then projected on the plane normal to a.

Fig. S9 shows that spatial dependence of Young's modulus (E), Linear 

compressibility (LC), Shear modulus (G) and Poisson's ratio (ʋ) for bulk diamond and 

γ-Fe. A higher degree of isotropic elastic properties results in the smaller variation in 

the magnitude of the three-dimensional (3D) surfaces and 2D contours. The 2D 

projection plots correspond to a cut through the 3D surface plots on the XY, XZ, and 

YZ planes. The maximum-to-minimum Young’s modulus ratio for diamond and γ-Fe 

is 1.15 and 1.58, respectively, which shows that diamond is with little anisotropy 

characteristic and there is no negligible one for γ-Fe structure. Meanwhile, for diamond 

structure, the maximum value of 1173.5 GPa corresponds to the <111> direction while 

the minimum value for the <100> direction is 1023.5 GPa (see Fig. S9 (a) and (a1)). 

For γ-Fe structure used, the maximum and minimum values of 325.6 and 206.0 GPa 

correspond to the <111> and <100> direction (see Fig. S9(e) and (e1)), respectively. 

The 3D surface plot for the linear compressibility of diamond and Fe structures is an 

approximate sphere, which shows negligible anisotropy for diamond and Fe structures 

because their values of linear compressibility are 0.76 and 0.77 TPa-1 in all directions 



(see Fig. S9 (b), (b1), (f) and (f1)), respectively. The range of the minimum and 

maximum values of the shear modulus and Poisson’s ratios for each direction of the 

applied stress is attributed to the variation in the direction of the measurement, which 

is the change of angle χ. In the 3D surface plots of the shear modulus and Poisson’s 

ratio, the translucent blue surface represents the maximal values and envelops the solid 

green surface inside, which represents the minimal values. The minimum surface has a 

color map applied such that darker colors represent smaller values than brighter colors 

as shown in Fig. S9 (c), (d), (g) and (h). In the 2D plots, the maximum values are 

represented by a blue curve, and the minimum values are denoted by a green curve as 

shown in Fig. S9 (c1), (d1), (g1) and (h1). For diamond structure, the ratio of the 

maximum to the minimum shear modulus values is 1.17, and the maximum and 

minimum values are 559.35 GPa in the <100> direction and 462.45 GPa in the <111> 

directions (see Fig. S9 (c) and (c1)), respectively. Furthermore, the ratio of the 

maximum Poisson’s ratio to the minimum one is 9.92. The maximum and minimum 

values occur in the <110> direction with value of 0.44 and <111> direction with value 

of 0.33 (see Fig. S9 (d) and (d1)), respectively. For γ-Fe structure, the ratio of 

maximum to minimum shear modulus values is 1.76 and the maximum value (142.19 

GPa) and minimum one (80.77 GPa) are in <100> and <111> directions as shown in 

Fig. 6 (g) and (g1), respectively. In addition, the maximum and minimum Poisson’s 

ratio values are both occur in <110> direction as shown in Fig. S9 (h) and (h1), which 

are 0.38 and 0, respectively. The universal anisotropy index (AU) also is calculated to 

evaluate the anisotropy of diamond and γ-Fe structures, which can generally be applied 



to crystal systems that consider the bulk component of the elastic tensor [32]. Related 

equation is as follows:

                       (17)5 6 0U V V
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Based on the above equation, the AU values of diamond and γ-Fe structures are 0.04 

and 0.39, which indicates that the anisotropy of γ-Fe is slightly stronger than that of 

diamond.

Fig. S9 Spatial dependence of Young's modulus, Linear compressibility, Shear modulus and 
Poisson's ratio for bulk diamond and γ-Fe. (a), (b), (c) and (d) are 3D surface plot of Young's 
modulus, Linear compressibility, Shear modulus and Poisson's ratio for bulk diamond, respectively. 



(a1), (b1), (c1) and (d1) are corresponding 2D projection onto XY, XZ and YZ, respectively. 
Similarly, (e)-(h) and (e1)-(h1) are those 3D surface plot and 2D projection onto XY, XZ and YZ 
for γ-Fe, respectively.

In our prior work [33], rotating lattice matrix and the calculation process of ideal 

tensile and shear strength were described in detail. Rotation angles around z, y and x 

for different crystal planes are listed in Table S2.

Table S2 Rotation angles around z, y and x for different crystal planes
Structure Direction Rotation angle (º)

α β γ
Diamond Tensile

(100) 0 0 0
(110) 45 0 0
(111) 45 35.26 0
Shear
(111)[11 ]2 45 35.26 180
(111)[10 ]1 45 35.26 -150

Fe Tensile
(100) 0 0 0
(110) 45 0 0
(111) 45 35.26 0
Shear
(110)[001] -45 0 -90
(110)[1 0]1 -45 0 0

Calculated tensile and shear stress-strain curves for diamond and γ-Fe are shown 

in Fig. S10. From Fig. S10 (a), the calculated ideal tensile strengths in the <100>, 

<110> and <111> directions for diamond are 205.54, 115.56 and 82.39 GPa, 

respectively, which indicate that the <111> direction the weakest tensile direction, and 

thus the (111) planes are the easy cleavage planes. The shear stress is evaluated in the 

easy cleavage plane (111) of diamond. The ideal shear strength in the shear directions 

 and  are 101.79 and 85.87 GPa, respectively. Similarly, for γ-Fe, (111)[101] (111)[112]

the calculated ideal tensile strengths in the <100>, <110> and <111> directions are 

52.76, 35.48 and 50.94 GPa, respectively. It indicates that the easy cleavage plane of γ-



Fe is (110). The ideal shear strength in the shear directions  and (111)[001]

 are 38.85 and 22.19 GPa, respectively. Based on above analysis, ideal (111)[110]

tensile and shear strength of diamond are much larger than those of γ-Fe.

Fig. S10 Calculated tensile and shear stress-strain curves for diamond and γ-Fe. (a) and (b) are 
tensile and shear stress-strain curves for diamond, respectively. (c) and (d) are tensile and shear 
stress-strain curves for γ-Fe, respectively.

Section Ⅵ Schematic diagram of the material transfer

Figure. S11 depicts a schematic diagram of the material transfer process. Under 

the application of tensile stress along the Z-axis direction on the initial interface 

structure, as the tensile stress increases, the interface structure divides into two distinct 

regions, and some surface atoms from one region migrate to the other region.



Fig. S11 Schematic diagram of the material transfer process
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