Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

B_3S_2 monolayer as an anode material for Na/K-ion batteries: a first-principles study

Danhong Wang, a Zhifang Yang, a Wenliang Li, *a Jingping Zhang *a

Table of contents

Fig. S1. The phonon dispersion of B_3S_2 monolayer using a $(2x2x1)$ cell.	P1
Fig. S2. (a) Electronic band structure and (b) DOS of B ₃ S ₂ monolayer using a	(2x2x1)
cell.	P1
Fig. S3. Electronic band structures and DOSs of B ₃ S ₂ monolayer after the ads	orption
of Li, Na, and K atoms.	P2
Fig. S4. Top and side views of geometric structures for Li adsorption on the	ne B ₃ S ₂
monolayer.	Р3
Fig. S5. The lattice constant variation as the function of Na and K concentration	n x: (a)
$Na_xB_3S_2$, (b) $K_xB_3S_2$.	P3
Fig. S6. Snapshots of (a) $Na_6B_3S_2$ and (b) $K_2B_3S_2$ equilibrium structures at 300 $^\circ$	K at the
end of 2 ps AIMD simulations.	P4

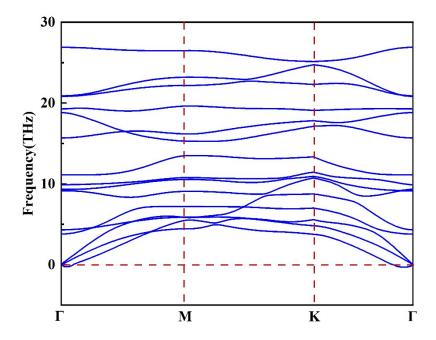
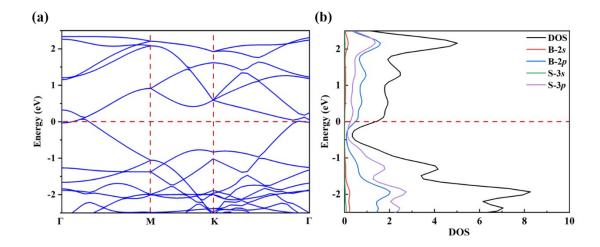



Fig. S1. The phonon dispersion of B_3S_2 monolayer using a (2x2x1) cell.

Fig. S2. (a) Electronic band structure and (b) DOS of B_3S_2 monolayer using a (2x2x1) cell.

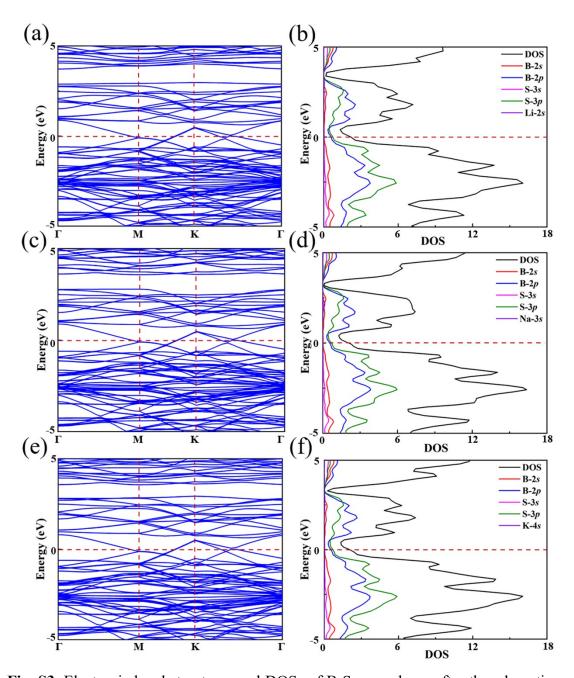
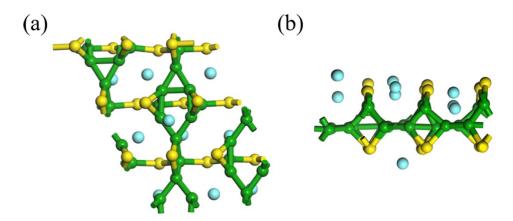



Fig. S3. Electronic band structures and DOSs of B_3S_2 monolayer after the adsorption of Li, Na, and K atoms.

Fig. S4. Top and side views of geometric structures for Li adsorption on the B_3S_2 monolayer.

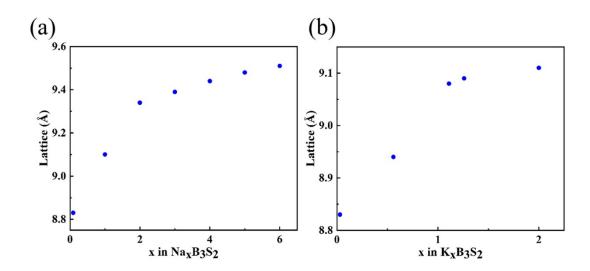


Fig. S5. The lattice constant variation as the function of Na and K concentration x: (a) $Na_xB_3S_2, (b)\ K_xB_3S_2.$

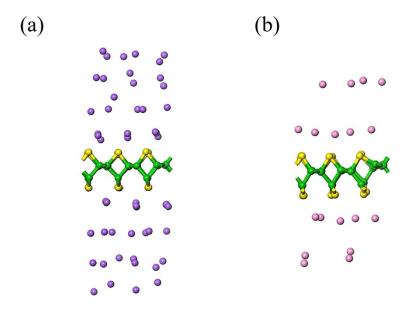


Fig. S6. Snapshots of (a) $Na_6B_3S_2$ and (b) $K_2B_3S_2$ equilibrium structures at 300 K at the end of 2 ps AIMD simulations.