How chemical cross-linking and entanglements in polybutadiene

elastomers cope with tearing

Xiangliang Zeng¹, Xinnian Xia^{1*}, JianFeng Fan², Rong Sun², Xiaoliang Zeng^{2*}

¹ College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu

District, Changsha 410082, China

² Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, Shenzhen 518055, China

*Corresponding authors: <u>xnxia@hnu.edu.cn</u>, <u>xl.zeng@siat.ac.cn</u>

EXPERIMENTAL

Materials: Both-end hydroxyl group-terminated hydrogenated polybutadiene (BHH-PB) (GI2000, molecular weight, Mn ~ 2000) was obtained from Nippon Soda Co., Ltd., polybutadiene adducted with maleic anhydride (PAMA) (Ricon 130MA8, number average molecular weight, Mn ~ 3100) was purchased from Cray Valley Chemical Co., Ltd. Hexamethylene diisocyanate (HDI), dibutyltin dilaurate (DBTDL), pentaerythritol tetrakys 3-(3,5-ditert-butyl-4-hydroxyphenyl)propionate (RALOX 630), and dichloromethane were obtained from Aladdin Inc. All materials were used as received without further processing.

Methods

B-H-P elastomers. BHH-PB (1.1 eq. of -OH), HDI (1 eq. of -NCO), DBTDL (0.005 eq. of -NCO), and 5 mL dichloromethane were added to a flask, the mixture was stirred for 3 h at 25 °C to form intermediate product (B-H). Subsequently, PAMA (0.25 g, 0.5 g, 0.75 g, 1 g) and RALOX 630 (1 wt%) was added to the flask, followed by pouring the mixture into a Teflon mold. The mixture was cured for 2 h at 150 °C to obtain the B-H-P elastomers.

Optical images. The optical images were obtained with an iPhone.

Tensile and tear test. Mechanical tensile-stress experiments were carried out by a SUNS UTM4000 instrument at room temperature (25 °C) with a displacement rate of 10 mm min⁻¹. The tear test is to control the crack speed at 0.017 mm s⁻¹, 0.067 mm s⁻¹, 0.25 mm s⁻¹, 0.83 mm s⁻¹, and 2.5 mm s⁻¹.

Dynamic mechanical analysis. Dynamic mechanical analysis was performed on a TA

Instruments RSA-G2 Solids Analyzer. Samples were cut into square for characterization. For stretching cycle tests, a 0.83 mm s⁻¹ speed was applied on the samples to stretch to 100%, and then keep the speed 0.83 mm s⁻¹ to 0%.

Rheology test. The dynamic viscoelasticity of the samples was measured by an Anton Paar model MCR-302 rheometer. The samples were placed under a 25 mm diameter parallel plate. In the frequency sweep tests, the angular frequency (ω) was from 100 to 0.01 rad s⁻¹ at 25 °C with the shear strain (γ) of 1%.

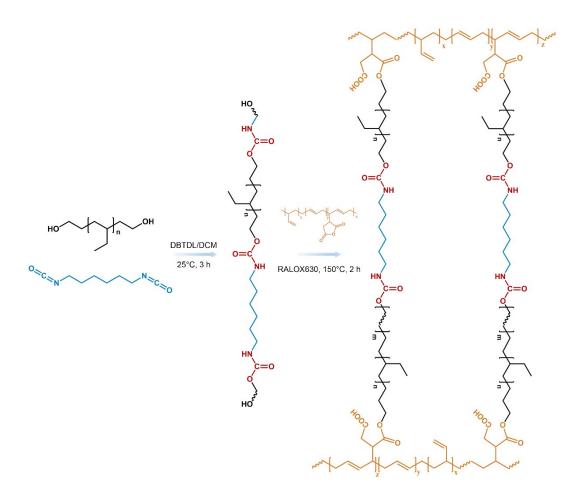


Fig. S1 Chemical reaction flow diagram for the preparation of $B-H-P_x$ elastomers.

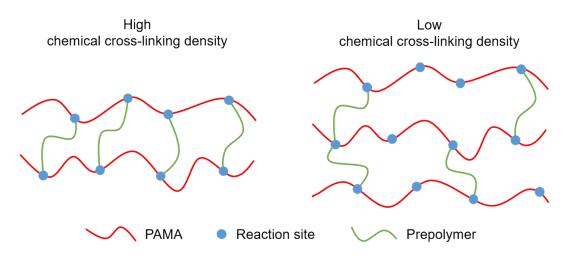


Fig. S2 Schematic diagram of branch points affect the chemical cross-linking density of elastomers.

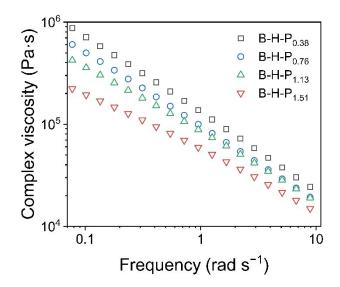


Fig. S3 Complex viscosity of fabricated elastomers.

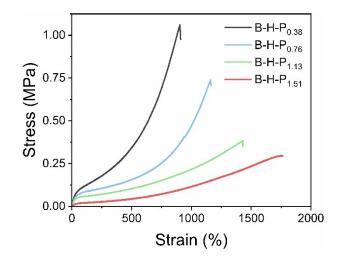


Fig. S4 Stess-strain curves for B-H-P_x elastomers.

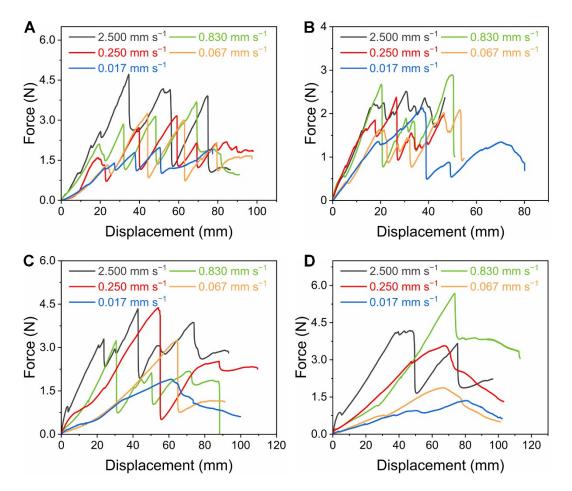


Fig. S5 Force-displacement curves. A B-H-P_{0.38}, B B-H-P_{0.76}, C B-H-P_{1.13}, and D B-

H-P_{1.51} elastomers.

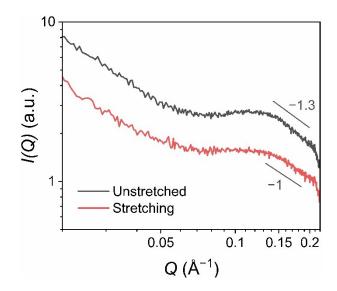


Fig. S6 Small-angle X-ray scattering of B-H-P_{1.51} elastomer.

Elastomer	B-H-P _{0.38}	B-H-P _{0.76}	B-H-P _{1.13}	B-H-P _{1.51}
Crosslinking density				
	56.205	48.463	40.285	30.171
$(10^{-4} \text{ mol ml}^{-1})$				

Table S1 The chemical cross-linking density of the elastomers.

Elastomer	B-H-P _{0.38}	B-H-P _{0.76}	B-H-P _{1.13}	B-H-P _{1.51}
Molecular weight between	344492	400390	646175	959195
two cross-linkers (g mol ⁻¹)	54772	400570	0-0175))))))
Molecular weight between				
two entanglement points	27637	32957	46695	148305
$(g \text{ mol}^{-1})$				

Table S2 The calculated molecular weight between two cross-linkers andmolecular weight between two entanglement points of the elastomers.