Supplementary Information for

Construction of BC₃-based TM Single-atom Catalyst for Efficient Reduction of CO₂

to CH₄: A Computational Study

Jianxin Ou,^a Liying Pan,^a and Xiangmei Duan*^{a,b}

^aSchool of Physical Science and Technology, Ningbo University, Ningbo, 315211, China

^bLaboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, China

*Corresponding authors.

E-mail address:_duanxiangmei@nbu.edu.cn

Fig. S1 The calculated electron localization function (ELF) for TM@BC₃.

Fig. S2 (a) Charges obtained from the substrates and (b) the adsorption energies of *COOH and *OCHO.

Fig. S3 The optimal structures for *COOH on TM@BC₃.

Fig. S4 PDOS of (a) *COOH and (b) *OCHO on 12 substrates.

Fig. S5 The optimal structures of the intermediates on Pt@BC₃.

Fig. S6 The Gibbs free energy diagrams of CO₂RR on TM@BC₃ (TM=Fe, Co, Ni, Ru, Rh, and Ag).

Fig. S7 The Gibbs free energy diagrams of CO₂RR on (a) V@BC₃ and (b) Mo@BC₃.

Fig. S8 Relationship between ΔG_{*OCHO} and descriptor φ .

Fig. S9 The Gibbs free energy diagram of CO₂RR on Ni@V_B-BC₃.

TM@BC ₃	$E_{\mathbf{b}}$	$E_{\rm b}/E_{\rm c}$
V	-5.77	0.98
Mn	-4.79	1.19
Fe	-5.86	1.11
Co	-6.55	1.18
Ni	-6.39	1.23
Cu	-4.10	1.02
Mo	-5.84	0.93
Ru	-7.82	1.16
Rh	-7.33	1.22
Pd	-5.48	1.46
Ag	-2.70	1.07
Pt	-7.71	1.38

Table S1. Binding energy E_b (in eV) of TM@BC₃ and the ratio of binding energy and cohesion energy

 $(E_{\rm b}/E_{\rm c})$